
Abstract

Errata

Title \& Document Type: 3325A Synthesizer/Function Generator Operating and Service Manual

Manual Part Number: 03325-90002

Revision Date: May 1984

\section*{HP References in this Manual}

This manual may contain references to HP or Hewlett-Packard. Please note that HewlettPackard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test \& Measurement website:
www.tm.agilent.com
Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

Agilent Technologies

OPERATING AND SERVICE MANUAL

MODEL 3325A SYNTHESIZER/FUNCTION GENERATOR

Serial Numbers: All

IMPORTANT NOTICE

This manual applies to all instruments. Earlier versions of the 3325A, however, may differ in design from the instruments this revision documents directly. Design and documentations changes are identified by a Δ symbol. The delta symbols refer servicing personnel to the backdating section (Section VII) where specific information regarding the change is presented.

Warning

To prevent potential fire or shock hazard, do not expose equipment to rain or moisture.

Manual Part No. 03325-90002
Microfiche Part No. 03325-90052

SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsowhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customar's failure to comply with these requirements: This is a Safety Class 1 instrument.

GROUND THE INSTRUMENT

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

DO HOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to a HewlettPackard Sales and Service Office for service and repair to ensure that safety features are maintained.

DANGERDUS PRDCEDURE WARNINGS

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

WARNING

Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting.

SAFETY SYMBOLS

General Definitions of Safety Symbols Used On Equipment or In Mantuals.

Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage to the instrument.

4 Indicates dangerous voltage (terminals fed from the interior by voltage exceeding 1000 volts must be so marked).

Protective conductor terminal. For protection against electrical
 shock in case of a fault. Used with field wiring terminals to indicate the terminal which must be connected to ground before operating equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common, as well as providing protection against electrical shock in case of a fault. A terminal marked with this symbol must be connected to ground in the manner described in the installation (operating) manual, and before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the equipment which normally includes all exposed metal structures.

Alternating current (power line).
$=-$ Direct current (power line).

WARNING
Alternating or direct current (power line).

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly per- formed or adhered to, could result in injury or death to personnel.

The CAUTION sign denotes a hazard. It calls attention to an
 operating procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product.

N OTE: The NOTE sign denotes important information. It calls attention to procedure, practice, condition or the like, which is essential to highlight.

TABLE OF CONTENTS

Section Page
I. GENERAL INFORMATION 1-1
1-1. Introduction 1-1
1-5. Instrument Description 1-1
1-9. Specifications 1-1
1-11. Supplemental Operating Information 1-1
1-13. Remote Control 1-1
1-15. Options 1-1
1-17. Accessories Supplied 1.5
1-19. Accessories Available 1-5
1-21. Instrument and Manual Identification 1-6
1-24. Safety Considerations 1-6
1-27. Recommended Test Equipment 1-6
Section Page
II. INSTALLATION 2-1
2-1. Introduction 2-1
2-3. Initial Inspection 2-1
2-5. Preparation For Use 2-1
2-6. Power Requirements 2-1
2-8. Line Voltage Selection 2-1
2-10, Power Cable 2-1.
2-12, HP-IB Connections 2-1
2-15. 3325A Listen/Talk Address 2-3
2-17. HP-IB Description 2-4
2-19. Connecting Oven Option 001 2-4
2-21. Operating Environment 2-4
2-23. Cooling System 2-4
2-26. Bench Operation 2-4
2-28. Rack Mounting 2-4
2-30. Storage and Shipment 2-4
2-31. Environment 2-4
2-33. Instrument Identification 2-6
2-35. Packaging 2-6
Section Page
111. OPERATION 3-1
3-1. Introduction 3-1
3-3. Panel Features 3-3
3-5. Power/Warm-Up 3-3
3-8. Initial Conditions 3-3
3-10. Self Test 3-3
3-12. Front/Rear Signal Output 3-3
3-14. Sync Output 3-3
3-16. External Reference Input 3-4
3-18. 10 MHz Oven Option 001 3-4
3-20. Manual Programming 3-4
3-22. Clear Display 3-4

Section
3-24, Entry Errors
Page
3-26. Function Selection 3-4
3-28. Frequency Entry 3-4
3-30. Frequency Limits 3-4
3-32. Frequency Display and Resolution .3-5
3-34. Auxiliary Output (Sine Function Only) $3-5$
3-36. Amplitude Entry 3-5
3-39. Amplitude Calibration3-5
3-41. High Voltage Output Option 002 . 3-6
3-43. DC Offset. 3-6
3-46. Phase Entry . 3-7
3-49. Frequency Sweep. 3-7
3-55. Sweep Marker 3-9
3-58. Sweep X Drive Output 3-10
3-60. Sweep Z Blank Output 3-10
3-62. Amplitude Modulation 3-10
3-66. Phase Modulation 3-11
3-68. Modify Keys3-11
3-70. Store and Recall 3-11
3-72. Operator's Checks3-11
3-74. Self Test . 3-11
3-76. Output Checks.......................3-11
3-78. Operator's Maintenance 3-12
3-81. HP-IB Operation3-12
3-83. General HP-IB Description........3-13
3-88. $\begin{aligned} & \text { Definition of HP-IB Terms } \\ & \text { and Concepts3-13 }\end{aligned}$
3-89. Basic Device Communication
Capability 3-14
3-91. Message Definitions3-14
3-93. 3325A Response to Messages 3-14
3-95. HP-IB Work Sheet 3-14
3-97. HP-IB Addressing. 3-14
3-100. 3325A Remote Programming 3-14
3-101. 3325A HP-IB Capabilities. 3-14
3-103. Developing an HP-IB Program ...3-15
3-107. Universal and Addressed Commands3-17
3-109. Placing the 3325A in Remote..... 3-17
3-111. The 3325A Address 3-17
3-113. 3325A Data Message Formats3-17
3-115. Data Transfer Mode. 3-20
3-118. Programming Data Transfer Mode3-21
3-120. Programming Entry Parameters.,.,3-21
3-122. Programming Waveform Function 3-21
3-124. Programming Binary (On or Off)
Functions . 3-22
3-126. Programming Selection Fur.wions . 3-22

TABLE OF CONTENTS (Cont'd)

3-128. Programming Execution Functions 3-22

3-130. Programming Amplitude Units
Conversion 3-23
3-132. Programming Storage Registers . . .3-23
3-134. Service Requests 3-23
3-136. Serial Poll. 3-23
3-138. Status Byte . 3-24
3-140. Busy Flag . 3-24
3-142. Sweep Flag . 3-24
3-144. $\begin{aligned} & \text { Masking or Enabling Service } \\ & \\ & \text { Requests . 3-24 }\end{aligned}$
3-146. Interrogating Program Errors......3-24
3-148. Interrogating Entry Parameters ...3-25
3-150. Interrogating Function
3-152. Interrogating Miscellaneous
Parameters . 3-26
3-154. Using the Interrogate Capability . .3-26
3-156. 3325A Programming Procedure . . .3-27
Appendix A. Meta Messages Block
Diagrammed
A-1
Appendix B. Programming The Model 3325A
with the 9825 A Calculator B-1
Section Page
IV. PERFORMANCE TESTS 4-1
4-1. Introduction 4-1
4-3. Calculator-Controlled Test 4-1
4-5. Operational Verification 4-1
4-8. Required Test Equipment 4-1
4-10. Self Test 4-1
4-12. Sine Wave Verification 4-1
4-14. Square Wave Verification $4-2$
4-16. Triangle and Ramp Verification 4-3
4-18. Amplitude Flatness Check 4-3
4-20. Sync Output Check 4-4
4-22. Frequency Accuracy 4-4
4-24. Output Level and Attenuator Check 4-4
4-26. Harmonic Distortion Test 4-5
4-28. Close-In Spurious Signal Test 446
4-30. HP-IB Interface Test 4-6
4-32. Performance Tests 4-11
4-35. Equipment Required 4-12
4-37. Harmonic Distortion Test 4-12
4-39. Spurious Signal Tests 4-13
4-41. Integrated Phase Noise Test 4-15
4-43. Amplitude Modulation Envelope Distortion Test $4-15$
4-45. Square Wave Rise Time and Abberations 4-16
4-47. Ramp Retrace Time 4-16
4-49. Sync Output Test 4-16
4.51. Square Wave Symmetry 4-16
4-53. Frequency Accuracy 4-17
4-55. Phase Increment Accuracy 4-17
4-57. Phase Modulation Linearity 4-19
4-59. Amplitude Accuracy 4-20
4-61. DC Offset Accuracy (DC Only) 4-23
4-63. DC Offset Accuracy with AC Functions 4-25
4-65. Txiangle Linearity 4-25
4-67. X Drive Linearity 4-27
4-69. Ramp Period Variation 4-29
4-71. HP-IB Interface Test 4-30
Section Page
V. ADJUSTMENTS 5-1
5-1. Introduction 5-1
5-3. Equipment Required 5-2
5-5. Adjustment Procedures 5-2
5-7. Power Supply 5-2
5-8. D/A Converter Offset 5-2
5-9. Voltage Controlled Oscillator (VCO Frequency) 5-2
5-10. Analog Phase Interpolation (API) 5-2
5-11. $\quad 30 \mathrm{MHz}$ Reference Oscillator 5-3
5-12. Option 001 High Stability Frequency Reference 5-3
5-13. Sine Wave Amplitude Calibration 5-3
5-14. X Drive 5-4
5-15. Amplifier Bias Adjustment 5-4
5-16. Ramp Stability 5-5
5-17. Amplitude Flatness 5-5
5-18. Mixer Spurious Signal 5-6
Section Page
VI. REPLACEABLE PARTS 6-1
6-1. Introduction 6-1
6-4. Ordering Information $6-1$
6-6. Non-Listed Parts $6-1$
6-8. Proprietary Parts 6-1
6-10. Printed Circuit Assemblies 6-1
Section
VII. MANUAL BACKDATING 7-1
7-1. Introduction 7-1
7-3. Format 7-1
7-5. Change Sheets and Service Notes 7-1
7-8. Backdating Information. 7.2
7-9. Service Group A - Keyboard and Display (03325-66505) $\Delta 1$ $.7-2$
Section Page
7-12. Service Group B - HP-IB Circuits(P/O 03325-66506) $\Delta 2$$7-3$
7-15. Service Group C - Control Circuits (P/O 03325-66506) $\Delta 2$ 7-3
7-18. Service Group D - Voltage ControlledOscillator Shield (P/O 03325-66521)$\Delta 3$$7-5$
7-21. Service Group E - $\boldsymbol{\tau}$ N.F. Counter (P/O 03325-6652l) $\Delta 3$ 7-7
7.24. Service Group F - Fractional N Analog Circuits (P/O 03325-66521) $\Delta 3$7-10
7-27. Service Groups D and G - VCO Buffer (P/O 03325-66503), 30MHz Reference and Dividers (P / O 03325-66503) $\Delta 4$ 7.12
7-31. Service Group H - Mixer (P/O 03325-66503) $\Delta 4$ 7-14
7-34. Service Group I - D/A Converter and Sample/Hold (P/O 03325-66514)$\Delta 5$$7-15$
7-37. Service Group J - Function Circuits (P/O 03325-66514) $\Delta 5$ 7-17
7-40. Service Group K - Output Amplifier ($\mathrm{P} / \mathrm{O} 03325-66514$) $\Delta 5$ $7-20$
7-43. Service Group L - Attenuator (03325-66523) and Relay Drivers (P/O 03325-66514) $\Delta 5, \Delta 6$ 7-22
7-47. Service Group M - Options: High Voltage Output (Opt. 002) (03325-66508) and High Stability Reference (Opt. 001) (03325-66509) $\Delta 7$ 7-24
7-49. Service Group N - Sweep Drive Circuits ($\mathrm{P} / \mathrm{O} 03325-66514$) 45 7-24
7-52. Service Group O-Power Supplies(03325-66502) $\Delta 8$7-25
Section Page
VIII. SERVICE 8-1
8-1. Introduction 8-1
8-3. Basic Theory 8-1
8-5. Theory Of Operation 8-1
Section8-7. Keyboard and Display(Service Group A)8-1
8-12. HP-IB Circuits (Service Group B) 8-3
8-18. Control Circuits (Service Group C) 8-5
8-24. Frequency Synthesis 8-8
8-43. Reference Circuits
(Service Group G) 8-12
8-51. Mixer (Service Group H) 8-13
8-53. D/A Converter (Service Group I) 8-13
8-59. Function Circuits (Service Group J) $8-16$
8-72. Output Amplifier
(Service Group K) 8-19
8-77. Attenuator (Service Group L) 8-19
8-80. High Voltage Output Option 002 (Service Group M) 8-19
8-82. Sweep Drive Circuits (Service Group N) 8-19
8-89. Crystal Oven Option 001 (Service Group M) 8-22
8-91. Power Supplies (Service Group O) 8-22
8-98. Sine Amplitude Control Path . 8-23/8-24
8-99. Amplitude Control Circuitry .8-23/8-24
8-102. Auto Calibration Disable(ACD)8-23/8-24
8-104. Servicing Information 8-25
8-105. Power Line Voltage Selection. 8-25
8-107. Fan Filter 8-25
8-109. Adapter Cable 8-25
8-111. Access to Reverse Side of A21, A3, A14, 8-25and A6
8-113. A6, A14, A3, A21, A23 Connector Compatibility $8-26$
8-115. Troubleshooting Information 8-26
8-117. Test Equipment Required 8-26
8-119. Adjustments Required After Repair 8-28
8-121. Basic Troubleshooting Procedures 8-28
8-124. Orientation Of Components 8-28
8-126. Mnemonic Dictionary 8-28
8-128. Logic Troubleshooting by SignatureAnalysis8-28

LIST OF TABLES

Table Page Table Page
3-1. Operating Information 3-1
3-2. Amplitude Limits of AC Function 3-5
3-3. High Voltage Output Amptitudes (Option 002) 3-6
3-4. Maximum DC Offset with any AC Function 3-7

LIST OF TABLES (Cont'd)

Table Page
3.5. General Interface Management Lines 3-14
3-6. Definition of Meta Messages 3-15
3-7. 3325A Implementation of Messages 3-16
3-8. Interface Functions 3-16
3-9. Summary of 3325A Programming (ASCII) 3-18
3-10. Programming Codes 3-19
3-11. SRQ Mask/Enable Data 3-25
4-1. Test Equipment Required for Operational Verification 4-2
4-2. Test Equipment Required for Performance Tests 4-11
5-1. Test Equipment Required For Adjustments 5-1
5-2, Padding Values 5-6
6-1. List of Abbreviations 6-2
6-2. List of Manufacturers 6-2
6-3. Replaceable Parts List 6-3
7-1. 3325A Circuit Board Revisions 7-2
$7-2$. A5 Board Revisions 7-2
7-3. A6 Board Revisions 7-3
Table Page
7-4. A6 Board Revisions 7-3
7.5. A2l(A1) Board Revisions 7-6
7-6. A21(A1) Board Revisions 7-8
7-7. A21(A1) Board Revisions 7-10
7-8. A3 Board Revisions 7-12
7-9. A3 Board Revisions 7-14
7-10. A14(A4) Board Revisions 7-16
7-11. A14(A4) Board Revisions 7-17
7-12. A14(A4) Board Revisions 7-21
7-13. A23(A7) Board Revisions 7-22
7-14. A14(A4) Board Revisions 7-24
7-15. A2 Board Revisions 7-25
8-1. Attenuation and Voltage Ranges 8-20
8-2. Assembly/Cable Compatibility for Serial Numbers 1748A04250 and Below 8-25
8-3. Test Equipment for Troubleshooting 8-26
8-4. Adjustments Required After Repair 8-28
8-5. Trouble Symptoms 8-29
8-6. Mnemonic Dictionary 8-30

LIST OF ILLUSTRATIONS

Figure Page
2-1. Line Voltage Selection 2-2
2-2, Power Cables 2-3
2-3. HP-IB Connector 2-3
2-4. Rack Mount and Handle Kits 2-6
3-1. Front and Rear Panel Controls 3-2
3-2. Maximum DC Offset with AC Functions 3-8
3-3. Interface Connections and Bus Structure 3-13
4-1. Harmonic Distortion Verification (High Voltage Output) 4-5
4-2. Mixer Spurious Test 4-13
4-3. Integrated Phase Noise Test 4-14
4-4. AM Envelope Distortion 4-15
4-5. Square Wave Symmetry 4-17
4-6. Frequency Accuracy 4-18
4-7. Phase Increment Accuracy 4-18
4-8. Phase Modulation Linearity 4-19
4-9. Amplitude Accuracy and Flatness 4-24
4-10. Triangle and Ramp Linearity Test. 4-26
4-11. Triangle Linearity Test 4-27
4-12. X Drive Linearity Test 4-29
4-13. X Drive Linearity Test 4-30
4-14. Ramp Reset Waveform 4-30Page

Figure
 Figure

Page
5-1. Ramp Reset Waveform 5-5
5-2. Amplitude Flatness Adjustment 5-6
5-3. Location of Adjustments 5-7
6-1. Location of Parts 6-31/6-32
7-1. Processor Interrupt Circuitry (Serial Numbers 1748A00230 and Below). 7-4
7-2. Schematic and Board Location of R11 andR12 (Serial Numbers 1748A02600 andBelow)7-4
7-3. VCO Circuitry - Serial Numbers 1748A02475 and Below 7-6
7-4. VCO Circuitry - Serial Numbers 1748A03226 to 1748A07390 7-7
7-5. HINV Clocking Circuitry - Serial Numbers 1748A00230 and Below $7-8$
7-6. A21U8 Gating Circuitry - Serial Numbers1748A02475 and Below7-9
7-7. A21U8 Gating Circuitry - Serial Numbers 1748A02476 to 1748A07390 7-9
7-8. Integrator and Phase Modulation Circuitry- Serial Numbers 1748A02475and Below$7-10$
7-9. Sample/Hotd Circuitry (Serial Numbers 1748A02475 and Below) 7411

TABLE OF CONTENTS (Cont'd)

Figure Page
7-10. U14 Biasing Circuitry (Serial Numbers 1748A00620 and Below) 7-12
7-11. Sine Amplitude Control and Amplitude Modulation Circuitry (Serial Numbers 1748A04675 and Below) 7-13
7-12. Mixer Driver Circuitry (Serial Numbers 1748A04675 and Below) 7-15
7-13. DC Offset Control (Serial Numbers 1748A01075 and Below) 7.18
7-14. DC Offset Control (Serial Numbers 1748A08790 to 1748A01076) 7-18
7-15. Amplitude Control Circuitry (Serial Numbers 1748A05825 and Below). 7-19
7-16. Amplitude Control Circuitry (Serial Numbers 1748A05826 to 1748A08790) 7-20
7-17. Output Amplifier (Serial Numbers 1748A01900 and below) $7-21$
7-18. Relay Drive Circuitry (Serial Numbers 1748A01075 and Below) 7-23
7-19. Location Of F2 (Serial Numbers 1748A05825 to 1748A01076) $7-26$
7-20. $\pm 15 \mathrm{~V}$ Regulator (Serial Numbers 1748A01075 and Below) 7-26
8-1. Simplified Block Diagram 8-2
8-2. Basic Block Diagram, Logic Circuits 8-2
8-3. Keyboard and Display Block Diagram 8-3
8-4. HP-IB Data Input Path 8-4
8-5. HP-IB Data Output Path 8-4
8-6. HP-IB Management and Handshake 8-5
8-7. Basic Block Diagram of Control Circuits 8-6
8-8. Phasc Lock Loop 8.7
8-9. Phase Detector 8-8
8-10. Integrator Output 8-9
8-11. Addition of D/A Converter and Pulse Remove Blocks 8-9
8-12. Phase Accumulation 8-10
8-13. Divide By N Counter 8-11
8-14. External Reference Phase Lock Loop Block Diagram 8-12
8-15. Level Control and Amplitude Modulation 8-13
8-16. Mixer Diagram 8-14
8-17. Preset Counters 8-14
8-18. D/A Converter 8-15
8-19. DAC Sample/Hold 8-15
8-20. Enable Signals For Function Switching 8-17
8-21. Simplified Illustration of Triangle Gencration 8-18
Figure Page
8-22. Simplified Illustration of Ramp Generation 8-18
8-23. Marker and X Drive Start-Stop Flip-Flops 8-20
8-24. X Drive Ramp Output 8-21
8-25. Power Supply Standby/On Circuit 8-22
8-26. Sine Amplitude Control Path . .8-23/ -24
8-27. Adapter Cable 8-27
8-28(a). Access to Reverse Side of Assemblies 8-27
8-28(b). Basic Troubleshooting Procedure 8-31
8-29. Signature Analysis Test 4 8-A-5
8-30. Keyboard and Display, A5 . 8-A-7/8-A-88-31(a). Signature Analysis Test 3.,.8-B-5/8-B-6
8-31(b). Signature Analysis Test 3 . . . 8-B-7/8-B-8
8-31(c). Signature Analysis Test 3....... 3 8-B-9
8-32. HP-IB Circuits, A6 8-B-11
8-33(a). Signature Analysis Test 18 -C-19/8-C-20
8-33(b). Signature Analysis Test $18-\mathrm{C}-21 / 8-\mathrm{C}-22$
8-34(a). Signature Analysis Test 2 8-C-25/8-C-26
8-34(b). Signature Analysis Test 2 8-C-27/8-C-28
8-35(a). Signature Analysis Test $58 \mathrm{C}-31 / 8 \mathrm{C}-32$
8-35(b). Signature Analysis Test 5 8-C-33/8-C-34
8-35(c). Signature Analysis Test 5 8-C-35
8-36. Control Circuits, A6 8-C-37
8-37. VCO, A21, and VCO Buffer, A3 8-D-7/8-D-8
8-38. \div N.F. Counter, A21 8-E-3/8-E-4
8-F-1. TP9 and TP10 Waveforms 8-F-4
8-39. Fractional N Analog, A21 ...8-F-5/8-F-6
8-G-1. Sine Amplitude Control Path 8-G-2
$8-40$. 30 MHz Reference and Dividers,
A3 . 8-G-3/8-G-4
8-H-1. Sine Amplitude Control Path $8 \mathrm{~m}-2$
8-41. Mixer, A3 8-H-3/8-H-4
8-I-1. Sine Amplitude Control Path 8-I-3
8-42. D/A Converter and Sample/Hold, A14 8-I-5/8-I-6
8-J-1. Sine Amplitude Control Path 8-J-4
8-43. Function Circuits, A14 8-J-7/8-J-8
8-K-1. Sine Amplitude Control Path 8-K-2
8-44. Output Amplifier, A14 8-K-5/8-K-6
8-45. Relay Drivers, A14, and Attenuator,A238-L-3/8-L-4
8-46. High Voltage Output Option 002A8$8-\mathrm{M}-3 / 8-\mathrm{M}-4$
8-47. High Stability Reference Option 001, A9 8-M-5/8-M-6
8-48. Sweep Drive Circuits, A14 . .8-N-3/8-N-4
8-49. Power Supplies, A2 8-O-3/8-O-4
8-50. Function Block Diagram 8-P-1/8-P-2

SECTION I

GENERAL INFORMATION

1.1. INTRODUCTION,

1-2. The Operating and Scrvice Manual contains information required to install, operate, test, adjust, and service the Hewlett-Packard Model 3325A Synthesizer/Function Generator. The Operating Manual supplement is a copy of the first three sections of the Operating and Service Manual, plus the Operational Verification procedures from Section IV. The supplement should be kept with the instrument for use by the operator. The part numbers of both the Operating and Service Manual and the Operating Manual supplement are shown on the title pages.

1-3. Also shown on the title page of this manual is a Microfiche part number. This number can be used to order 4×6 inch transparencies of the Operating and Service Manual, Each Microfiche contains up to 96 photo-duplicates of the manual pages. The Microfiche package includes the latest Manual Changes supplement as well as pertinent Service Notes.

1-4. Additional copies of the Operating and Service Manual, Operating Information Supplement, or Service Notes can be ordered through your nearest HewlettPackard Sales and Service Office. (A list of these offices is provided at the end of this manual.)

1-5. INSTRUMENT DESCRIPTION.

1-6. The Model 3325A Synthesizer/Function Generator produces the following signals at a minimum frequency of $1 \mu \mathrm{~Hz}$ and maximum frequency of:

Sine wave	20 MHz
Square wave	10 MHz
Triangle	10 kHz
Positive slope ramp	10 kHz
Negative slope ramp	10 kHz

Frequency may be selected with up to eieven digits of resolution. Output amplitude is 1 mV to 10 V peak-topeak. The output level may also be selected or displayed in V rms or in dBm (50 ohms). Any function may be de offset up to $\pm 4.5 \mathrm{~V}$, or the output may be de only up to $\pm 5 \mathrm{~V}$. An optional high voltage output produces up to 40 V p-p into ≥ 500 ohms load.

1-7. Frequency sweep of all functions is provided in linear or log sweep, at sweep times of 10 milliseconds to 99.99 seconds for linear sweep. Maximum time for log sweep is 99.99 seconds and minimum time is 2 seconds for single log sweep and 0.1 second for continuous log sweep. Single linear sweep may be up or down, while continuous sweep is up/down/up, etc., in the linear mode and up/up, etc., in log mode.

1-8. The Model 3325A is fully programmable through the rear panel Hewlett-Packard Interface Bus (HP-IB) connector. A device such as a programmable calculator is capable of remotely controlling the 3325A. Interface information is given in Section II of this manual, and programming information is in Section III.

1-9. SPECIFICATIONS.

1-10. Instrument specifications are listed in Table I-I. These specifications are the performance standards or limits against which the instrument is tested. Any changes in specifications due to manufacturing, design or traceability to the U.S. National Bureau of Standards are included in Table 1-1 of this manual and/or the Manual Changes Supplement.

1.11. SUPPLEMENTAL OPERATING INFORMATION.

1-12. Table $1-2$ contains information describing general operating characteristics of the 3325A. This information is supplemental operating information and is not to be considered as specifications.

1-13. REMOTE CONTROL.

1-14. Table 1-3 lists the HP-IB interface capabilities of the Model 3325A in conformity with IEEE Standard 488-1978, "Standard Digital Interface for Programmable Instrumentation'". HP-IB response times are given in Table 1-4.

1.15. OPTIONS.

1-16. The following options extend the frequency stability and output amplitude capabilities of the Model 3325A:

Option 001 High Stability Frequency Reference
Option 002 High Voltage Output
The following options indicate the line voltage to which the instrument was set at the factory:

Option 100 Nominal 100 V ac
Option 120 Nominal 120 Vac
Option 220 Nominal 220 V ac
Option 240 Nominal 240 V ac

Table 1-1. Specifications.

FUNCTIONS AND FREQUEMCIES

Sine Wave:
Signal Output (Front or Rear Panel):
0.000001 Hz to 20999999.999 Hz

Auxiliary Output (Rear Panel):
21000000.000 Hz to 60999999.999 Hz

Underrange to 19000000.001 Hz
Square Wave: 0.000001 Hz to 10999999.999 Hz
Triangle: 0.000001 Hz to 10999.999999 Hz
Positive and Negative Slope Ramp:
0.000001 Hz to 10999.999999 Hz

freduency resolution

$1 \mu \mathrm{~Hz}$ for frequencies below 100 kHz
1 mHz for frequencies 100 kHz and higher

frequency accuracy (Standard Instrument)

$$
\pm 5 \times 10^{-6} \text { of selected value }\left(20^{\circ} \text { to } 30^{\circ} \mathrm{C}\right)
$$

FREQUENCY STABILITY (Standard Instrument)

$$
\pm 5 \times 10^{-6} \text { per year }\left(20^{\circ} \text { to } 30^{\circ} \mathrm{C}\right)
$$

SIGNAL CHARACTERISTICS

Sine Wave:
Harmonic Distortion relative to the amplitude of the fundamental frequency at full output on each range

Fundamental Frequency	No Harmonic Greater Than
0.1 Hz to 50 kHz	-65 dB
50 kHzz to 200 kHz	-60 dB
200 kHz to 2 MHz	-40 dB
2 MHz to 15 MHz	-30 dB
15 MHz to 20 MHz	-25 dB

Spurious: All non-harmonically related output signals will be more than 70 dB below the carrier $(-60 \mathrm{~dB}$ with DC offset), or less than -90 dBm , whichever is greater.
Phase Noise: $\geq-60 \mathrm{~dB}$ (Option 001 Only) for a 30 kHz band centered on a 20 MHz carrier (excluding $\pm 1 \mathrm{~Hz}$ about the carrier).
Square Wave:
Rise/Fall Time: ≤ 20 nanoseconds, 10% to 90% at full output
Symmetry: $\leq .02 \%$ of period +3 nanoseconds
Overshoot: $\leq 5 \%$ of peak to peak amplitude at full output
Triangle:
Linearity, 10% to 90%, best fit straight line: $\pm 0.05 \%$ of full p-p output for each range

Ramps (Positive or Negative Slope):
Linearity, 10% to 90%, best fit straight line: $\pm 0.05 \%$ of full p-p output for each range
Retrace Time: ≤ 3 microseconds, 90% to 10%
Ramp Period Variation: $< \pm 1 \%$ of period, maximum

AMPLITUDE
Amplitude Accuracy with no Attenuation (Attenuator range 1) into 50 ohm Load. (No D.C. offset)

Function and frequency range	Tolerance relative to programmed amplitude

Sine Wave	
.001 Hz to 100 kHz	$\pm 0.1 \mathrm{~dB}$
Square Wave	
.001 Hz to 100 kHz	$\pm 1.0 \%$
Triangle	
.001 Hz to 2 kHz	$\pm 1.5 \%$
2 kHz to 10 kHz	$\pm 5 \%$
Ramps	
.001 Hz to 500 Hz	$\pm 1.5 \%$
500 Hz to 10 kHz	$\pm 10 \%$

Flatness with no attenuation	Tolerance relative to
(Attenuator Range 1) into	programmed amplitude at a 50 ahm load
$\mathbf{k H z}$	

Sine Wave 100 kHz to 20 MHz	$\pm 0.3 \mathrm{~dB}$
Square Wave 100 kHz to 10 MHz	$\pm 10 \%$

Amplitude accuracy with
Tolerance relative to
D.C. offset and no programmed amplitude. attenuation (Range 1) into a 50 ohm load.

| Sine Wave
 .001 Hz to 100 kHz $\pm 0.3 \mathrm{~dB}$
 Square
 .001 Hz to 100 kHz $\pm 3 \%$
 Triangle
 .001 Hz to 2 kHz $\pm 4 \%$
 2 kHz to 10 kHz $\pm 6 \%$
 Ramps
 .001 Hz to 500 Hz
 500 Hz to 10 kHz $\pm 4 \%$
 Attenuator Accuracy (these
 errors are additive with the
 amplitude accuracy errors) Tolerance relative to
 programmed amplitude. |
| :--- | :--- |

.001 Hz to 20 kHz Attenuator Range 1	No Error
.001 Hz to 100 kHz Attenuator ranges 2 through 8	$\pm 0.1 \mathrm{~dB}$
100 kHz to 10 MHz Attenuator ranges 2 through 8	$\pm 0.2 \mathrm{~dB}$
10 MHz to 20 MHz Attenuator ranges 2 through 4 Attenuator ranges 5 through 8	$\pm 0.2 \mathrm{~dB}$

Table 1-1. Specifications (Cont'd).

Accuracy of DC Offset (into 50 ohms):
DC Only (No AC Function): $\pm 0.4 \%$ of full peak output for each range*
*Except lowest attenuator range where accuracy is \pm
$20 \mu \mathrm{~V}$.
$D C+A C, \leq 1 M H z: \pm 1.2 \%$, Ramps $\pm 2.4 \%$
$D C+A C,>1 \mathrm{MHz}: \pm 3 \%$

AMPLITUDE MODULATION (of Sine Function only)

Modulation Envelope Distortion: -30 dB to 80% modulation at $1 \mathrm{kHz}, 0 \mathrm{~V}$ dc Offset

PHASE OFFSET

Range: $\pm 719.9^{\circ}$ with respect to arbitrary starting phase, or assigned zero phase

Resolution: 0.1°
Stability: $\pm 1^{\circ}$ phase $/{ }^{\circ} \mathrm{C}$
increment Accuracy: $\pm 0.2^{\circ}$

PHASE MODULATION

Linearity (Sine Function): $\pm 0.5 \%$, best fit straight line

SYNC OUTPUT

Output Levels into 50 ohms:
Square wave with $V_{\text {high }} \geq+1.2 \mathrm{~V}, \mathrm{~V}_{\text {low }} \leq+0.2 \mathrm{~V}$

X DRIVE OUTPUT

Amplitude: 0 to +10 V dc linear ramp proportional to sweep frequency (sweep up only)

Linearity, 10% to 90%, best fit straight line: $\pm 0.1 \%$ of final value. Specified for all linear sweep widths which are integral multiples of the minimum sweep width for each function and sweep time.

OPTION 001

HIGH STABILITY FREQUENCY REFERENCE

Ambient Stability: $\pm 5 \times 10^{-8}\left\{0^{\circ}\right.$ to $55^{\circ} \mathrm{C}$ referenced to $\left.+30^{\circ} \mathrm{C}\right)$

Aging Rate: $\pm 5 \times 10^{-8}$ per week (after 72 hours continuous operation) $\pm 1 \times 10^{-7}$ per month (after 15 days continuous operation)

OPTION 002

high voltage output

Frequency Range:
Sine and Square Wave: $1 \mu \mathrm{~Hz}$ to 1 MHz
Triangle and Ramps: $1 \mu \mathrm{~Hz}$ to 10 kHz
Amplitude:
Range: $4 \mathrm{mVp}-\mathrm{p}$ to $40 \mathrm{Vp}-\mathrm{p}$ ($\geq 500 \Omega,<500 \mathrm{pF}$ load) maximum output current, $\pm 40 \mathrm{~mA}$

Accuracy (at 2 kHz): $\pm 2 \%$ of full output for each range

Flatness: $\pm 10 \%$ of programmed amplitude
DC Offset:
Range: 4 times the range of the standard instrument
Accuracy: $\pm(1 \%+25 \mathrm{mV})$ of full output for each range

Signal Characteristics:
Sine Wave Harmonic Distortion (relative to the fundamental frequency at full output into ≥ 500 ohms, $<500 \mathrm{pF}$)

Fundamental Frequency	No Harmonic Greater Than
10 Hz to 50 kHz	-65 dB
50 kHz to 200 kHz	-60 dB
200 kHz to 1 MHz	-40 dB

Square Wave:

Rise/Fall Time: ≤ 125 nanoseconds, 10% to 90% at full output with ≥ 500 ohm, $<500 \mathrm{pF}$ load

Overshoot: $<10 \%$ of peak amplitude with ≥ 500 ohm, $<500 \mathrm{pF}$ load

Table 1.2 Supplemental Information

MAIH SIGNAL OUTPUT			4	30	299.9 mV to 100.0 mV
			5	100	99.99 mV to 30.00 mV
50Ω Impedance			6	300	29.99 mV to 10.00 mV
			7	1000	9.999 mV to 3.000 mV
BNC Connector, switchable to front or rear panel (not switchable with Option 002)			8	3000	2.999 mV to 1.000 mV
			DC Offset Only:		
May be floated a maximum of $\pm 42 \mathrm{~V}$ peak (ac +dc) from chassis (earth) ground			Range No.	Attenuation Factor	Amplitude (Peak-to-Peak)
Amplitude Ranges: All AC Functions (with no dc offset):			1	1	5.000 V to 1.500 V
			2	3	1.499 V to 500.0 mV
Range	Attenuation	Amplitude	3	10	499.9 mV to 150.0 mV
No.	Factor	(Peak-to-Peak)	4	30	149.9 mV to 50.00 mV
			5	100	49.99 mV to 15.00 mV
1	1	10.00 V to 3.000 V	6	300	14.99 mV to 5.000 mV
2	3	2.999 V to 1.000 V	7	1000	4.999 mV to 1.500 mV
3	10	999.9 mV to 300.0 mV	8	3000	1.499 mV to 1.000 mV

Table 1-2. Supplemental Information (Cont'd).
AC Function with DC Offset:

Range No.	Attenuation Factor	AC Function Amplitude (p-p)	Maximum DC (tor -)	Min. DC $(+$ or -)
1	1	9.998 V to 1.000 V	1.000 mV to 4.500 V	1.000 mV
2	3	999.9 mV to 333.4 mV	1.166 V to 1.499 V	0.100 mV
3	10	333.3 mV to 100.0 mV	333.3 mV to 450.0 mV	0.100 mV
4	30	99.99 mV to 33.34 mV	116.6 mV to 149.9 mV	0.010 mV
5	100	33.33 mV to 10.00 mV	33.33 mV to 45.00 mV	0.010 mV
6	300	9.999 mV to 3.334 mV	11.66 mV to 14.99 mV	0.001 mV
7	1000	3.333 mV to 1.000 mV	3.333 mV to 4.500 mV	0.001 mV

High Voltage Output Option 002:
Amplitude and Ranges: 4 times the standard instrument amplitudes

Output impedance: $<2 \Omega$ at DC to $<10 \Omega$ at 1 MHz
Square Wave Settling Time: $<1 \mu$ s to settle to within $.05 \%$ of final value for frequencies of 10 Hz to 500 kHz , tested at full output with no load

FREQUENCY SWEEP

Sweep Time:
Linear Sweep: 0.01 second to 99.99 seconds (single or continuous)

Log Sweep:
Single Sweep: 2 seconds to 99.99 seconds Continuous Sweep: 0.1 second to 99.99 seconds

Maximum Sweep Width: 1 Hz to maximum frequency of the function selected

Minimum Sweep Width (Linear):

Function	Minimum Sweep Width	
	Sweep Time 0.01 second	Sweep Time 99.99 seconds
Sine	0.1 mHz	999.9 mHz
Square	0.05 mHz	499.5 mHz
Triangle	0.005 mHz	49.95 mHz
Ramps	0.01 mHz	99.99 mHz

Minimum Sweep Width (Log): 1 decade
Phase Continuity: Sweep is phase continuous over the full frequency range

WARMUP TIME

Standard Instrument: 20 minutes to within specified accuracy

Option 001 High Stability Frequency Reference:
Reference will be within $\pm 1 \times 10^{-7}$ of final value 15 minutes after turn-on at $25^{\circ} \mathrm{C}$ for an off time of less than 24 hours

AUXILIARY IHPUTS (May be floated a maximum of $\pm 42 \mathrm{~V}$ peak [ac +dc$]$ from chassis [earth] ground)

Reference: For phase-locking the 3325A to an external frequency reference of 10 MHz or a subharmonic of 10 MHz down to 1 MHz . Level must be 0 dBm to +20 dBm into 50 ohms. Rear panel BNC connector.

Amplitude Modulation Input (Sine Function Only):
Modulation depth at full output for each range: 0 to 100\%

Modulation frequency range: DC to 500 kHz (0 to 21 MHz carrier frequency)

Sensitivity: 5 V peak for 100% modulation
Input Impedance: $10 \mathrm{k} \Omega$
Connector: Rear panel BNC
Phase Modulation:
Modulation Frequency Range: DC to 5 kHz
Modulation Depth

Function	Depth $(+$ or -$)$
Sine	850°
Square	425°
Triangle	42.5°
Ramps	85°

Input Impedance: $20 \mathrm{k} \Omega$
Connector: Rear panel BNC
AUXILIARY OUTPUTS (May be floated a maximum of $\pm 42 \mathrm{~V}$ paak [ac +dc] from chassis [earth] ground)

Auxiliary Frequency Output (ac coupled output):
Frequency Range: 21 MHz to 60.999999999 MHz , with underrange coverage to 19.000000001 MHz

Amplitude: 0 dBm
Output Impedance: 50 ohms
Connector: Rear panel BNC
1 MHz Reference Output (for phase-locking other instruments to 3325 A):

Amplitude: 0 dBm
Output Impedance: 50 ohms
Connector: Rear panel BNC
Marker Output (Linear sweep only):
Levels: High to Low TTL compatible voltage transition at selected marker frequency, sweep up only.

Connector: Rear panel BNC

Table 1-2. Supplemental Information (Cont'd).
X Drive Output (Sweep up only):
Amplitude: 0 to +10 V linear ramp proportional to sweep frequency

Connector: Rear panel BNC
Z Blank Output:
Levels (TTL compatible voltage levels):
Linear Sweep:
Single: Low at start of sweep, High at stop. Remains High until start of next sweep.

Continuous: Low during sweep up. High during sweep down.

Log Sweep:
Single: Low at start of sweep, High at stop. Remains High until start of next sweep.

Continuous: Low during sweep. Goes High momentarily at stop frequency.

10 MHz Oven Reference Output, Option 001, for phase locking the 3325A to the optional high stability frequency reference:

Amplitude: $0 \mathrm{dBm}, 50$ ohms
Connector: Rear panel BNC. Must be connected to the rear panel EXT REF IN connector,

REMOTE COHTROL

Hewlett-Packard Interface Bus (HP-IB) Control: (HP-IB is Hewlett-Packard Company's implementation of IEEE Standard 488-1978). Time shown is in addition to programming time.

Frequency Switching and Settling Time:*
$<10 \mathrm{~ms}$ to within 1 Hz of final value for 100 kHz span
$<25 \mathrm{~ms}$ to within 1 Hz of final value for 1 MHz span
$<70 \mathrm{~ms}$ to within 1 Hz of final value for 20 MHz span
Phase Switching and Settling Time:*
$<15 \mathrm{~ms}$ to within 90° of phase lock for 20 MHz frequency change

Amplitude Switching Time: *
$<30 \mathrm{~ms}$ to within amplitude specifications
*Times shown are in addition to programming time
GENERAL
Operating Environment:
Temperature: 0° to $55^{\circ} \mathrm{C}$
Relative Humidity: $<95 \%, 0^{\circ}$ to $40^{\circ} \mathrm{C}$
Altitude: $\leq 15,000 \mathrm{ft}$.
Storage Temperature: -50° to $+75^{\circ} \mathrm{C}$ Storage Altitude: $\leq 50,000 \mathrm{ft}$.

Power Requirements:
$100 / 120 / 220 / 240 \mathrm{~V}+5 \%,-10 \%, 48$ to 66 Hz
$60 \mathrm{VA}, 100 \mathrm{VA}$ with all options, 10 VA standby
Dimensions in millimeters and (inches):
$132.6(51 / 4)$ high $\times 425.5(163 / 4)$ wide $\times 497.8$ (19-5/8) deep

Weight in kilograms and (lbs):
Net weight: $9(20)$
Shipping Weight: 14.5 (32)

The following accessory options are also available for the Model 3325A:

Option 907	Front Handle Assembly
Option 908	Rack Mount Flange Kit
Option 909	Rack Mount Flange Kit/Front Handle Assembly
Option 910	Additional Operating and Service Manual

1-17. ACEESSORIES SUPPLIED.

1-18. A special connector is supplied with the High Stability Frequency Reference Option 001 for connecting the rear panel Reference Output to the Reference Input. This connector is Part No. 1250-1499.

1-19. ACCESSORIES AVAILABLE.

1-20. The following accessories are available for use with the Model 3325A:

Number	Description
11048 C	50 ohm Feedthru Termination
11356 A	Ground Isolator $03325-80001$
Oven Board Assy. (Converts 3325A to Option 001)	
$503325-80002$	High Voltage Option (Converts 3325A to Option 002)
$5061-0083$	Rack Mount Flange Kit (Option 908) Rack Mount Flange/Front Handle Kit (Option 909)

Front Handle Kit (Option 907)

1-21. INSTRUMENT AND MANUAL IDENTIFICATION.

1-22. The instrument serial number is located on the rear panel. Hewlett-Packard uses a two-section serial number consisting of a four-digit prefix and a five-digit suffix. A letter between the prefix and suffix identifies the country in which the instrument was manufactured ($\mathrm{A}=\mathrm{USA}, \mathrm{G}=$ West Germany, $\mathrm{J}=\mathrm{Japan}, \mathrm{U}=$ United Kingdom). All correspondence with Hewlett-Packard concerning this instrument should include the complete serial number.

1-23. The serial number prefix is thesame for all identical instruments and changes only when a change is made to the instrument. The suffix is assigned sequentially and is different for each instrument. If the serial number of your instrument is lower than the serial number on the title page of this manual, refer to Section VII, MANUAL CHANGES, for the information that will adapt this manual to your instrument. This is especially important if the serial prefix of your instrument is different than the one shown on the title page of this manual. An instrument manufactured after the printing of this manual may differ in some respect from the information in this manual. In this case, a yellow Manual Changes supplement included with the manual explains how to adapt the manual to your instrument.

1-24. SAFETY CONSIDERATIONS.

1-25. To ensure safe operation and to retain the instrument in a safe condition, this Operating and Service Manual contains information, cautions and warnimgs which must be adhered to by the user or service personnel.

Table 1-3. HP-IB Interface Capability.

Code	Function
SH1	Source handshake capability
AH1	Acceptor handshake capability
T 6	Basic talker; Serial poll; Unaddressed to talk if addressed to listen
L3	Basic listener; Listen onily; Unaddressed to listen if addressed to talk
SR1	Service Request capability
RL1	Remote/Local capability
PPD	No parallel poll capability
DC1	Device Clear capability
DTO	No device trigger capability
CO	No controller capability
E1	Open collector bus drivers

1-26. The symbol $\$ appearing on the front or rear panel of the 3325 A is an international symbol meaning "refer to the Operating and Service Manual". The symbol identifies important instructions required to prevent damage to the instrument. To ensure the safety of the operating and maintenance personnel and retain the safe operating condition of the instrument, these instructions must be adhered to.

1-27. RECOMMENDED TEST EQUIPMENT.

1-28. Equipment required to maintain the Model 3325A is listed in Table 1-5. Other equipment can be substituted if it meets or exceeds the critical specifications listed in the table.

Table 1-4. HP-IB Response Times.

Function	Mnemonic	Input Data Transfer Time	Device Time	Output Data Transfer Time
Function (Waveform) 1 Digit	FU	$\begin{aligned} & 450-500 \mu \mathrm{~s} \\ & 225-250 \mu \mathrm{~s} \end{aligned}$	$\begin{gathered} 1600 \mathrm{~ms} \\ 2.8 \mathrm{~ms} \end{gathered}$	$\begin{aligned} & 450-500 \mu \mathrm{~s} \\ & 225-250 \mu \mathrm{~s} \end{aligned}$
$\begin{aligned} & \text { Frequency } \\ & \leq 11 \text { Digits }+ \text { Decimal } \\ & \text { Delimiters } \end{aligned}$	FR HZ, KH, or MH	$\begin{gathered} 450-500 \mu \mathrm{~s} \\ 225-250 \mu \mathrm{~s} \text { each } \\ 450-500 \mu \mathrm{~s} \end{gathered}$	7.0 ms 2.8 ms each 12.5 ms	$\begin{gathered} 450-500 \mu \mathrm{~s} \\ 225-250 \mu \mathrm{~s} \text { each } \\ 450-500 \mu \mathrm{~s} \end{gathered}$
Amplitude ≤ 4 Digits + Decimal Delimiters	AM VO or MV VR or MR D8	$\begin{gathered} 450-500 \mu \mathrm{~s} \\ 225-250 \mu 5 \mathrm{each} \\ 450-500 \mu \mathrm{~s} \\ 450-500 \mu \mathrm{~s} \\ 450-500 \mu \mathrm{~s} \end{gathered}$	6.8 ms 2.8 ms each 90 ms 130 ms 250 ms	$\begin{gathered} 450-500 \mu \mathrm{~s} \\ 225-250 \mu \mathrm{~s} \text { each } \\ 450-500 \mu \mathrm{~s} \\ 450-500 \mu \mathrm{~s} \\ 450-500 \mu \mathrm{~s} \end{gathered}$
$\begin{aligned} & \text { DC Offset } \\ & \text { S4 Digits + Decimal } \\ & \text { Delimiters } \end{aligned}$	OF VO or MV	$\begin{gathered} 450-500 \mu \mathrm{~s} \\ 225-250 \mu \mathrm{~s} \text { 6ach } \\ 450-500 \mu \mathrm{~s} \end{gathered}$	6.8 ms 2.8 ms each 82 ms	$\begin{gathered} 450-500 \mu \mathrm{~s} \\ 225-250 \mu \mathrm{seach} \\ 450-500 \mu \mathrm{~s} \end{gathered}$
```Phase 54 Digits + Decimal Delimiter```	PH   DE	$\begin{gathered} 450-500 \mu \mathrm{~s} \\ 225-250 \mu \mathrm{~s} \text { each } \\ 450-500 \mu \mathrm{~s} \end{gathered}$	5 ms 2.8 ms each 28 ms	$\begin{gathered} 450-500 \mu \mathrm{~s} \\ 225-250 \mu \mathrm{seach} \\ 450-500 \mu 5 \end{gathered}$
Sweep Start Frequency $\leq 11$ Digits + Decimal Delimiters	\$T   $\mathrm{HZ}, \mathrm{KH}$, or MH	$\begin{gathered} 450-500 \mu \mathrm{~s} \\ 225-250 \mu \mathrm{~s} \text { each } \\ 450-500 \mu \mathrm{~s} \end{gathered}$	7.0 ms 2.8 ms each 10.3 ms	$\begin{gathered} 450 \cdots 500 \mu \mathrm{~s} \\ 225-250 \mu \mathrm{~s} \text { each } \\ 450-500 \mu \mathrm{~s} \end{gathered}$
Sweep Stop Frequency $\leq 11$ Digits + Decimal Delimiters	SP   $\mathrm{HZ}, \mathrm{KH}$ or MH	$\begin{gathered} 450-500 \mu \mathrm{~s} \\ 225-250 \mu \mathrm{each} \\ 450-500 \mu \mathrm{~s} \\ \hline \end{gathered}$	7.0 ms 2.8 ms each 10.3 ms	$\begin{gathered} 450 \ldots 500 \mu \mathrm{~s} \\ 225-250 \mu \mathrm{sech} \\ 450-500 \mu \mathrm{~s} \end{gathered}$
Sweep Marker Frequency $\leq 11$ Digits + Decimal Delimiters	MF $\mathrm{HZ}, \mathrm{KH}$ or MH	$\begin{gathered} 450-500 \mu \mathrm{~s} \\ 225-250 \mu \mathrm{~s} \text { each } \\ 450 \cdots 500 \mu \mathrm{~s} \end{gathered}$	7.0 ms 2.8 ms each 10.3 ms	$\begin{gathered} 450-500 \mu \mathrm{~s} \\ 225-250 \mu \mathrm{~s} \text { each } \\ 450-500 \mu \mathrm{~s} \end{gathered}$
Sweep Time $\leq 4$ Digits + Decimal Delimiter	$\begin{aligned} & \text { T1 } \\ & \text { SE } \end{aligned}$	$\begin{gathered} 450-500 \mu \mathrm{~s} \\ 225-250 \mu \mathrm{~s} \text { each } \\ 450-500 \mu \mathrm{~s} \\ \hline \end{gathered}$	5.5 ms 2.8 ms gach 7.0 ms	$\begin{gathered} 450-500 \mu 5 \\ 225-250 \mu \mathrm{~s} \text { each } \\ 450-500 \mu \mathrm{~s} \end{gathered}$
Store	SR	450-500 $\mu \mathrm{s}$	11 ms	
Recal!	RE	450-500 $\mu \mathrm{s}$	1700 ms	
Assign Zero Phase	AP	450-500 $\mu \mathrm{s}$	5.2 ms	
Amptd ¢al	AC	450-500 $\mathrm{\mu s}$	1500 ms	
Start Single Sweep	SS	450-500 $\mu \mathrm{s}$	300 ms	
Start Continuous Sweep	SC	450-500 $\mu \mathrm{s}$	300 ms	
Interrogate (Add Parameter Mnemonic Time)	1	225-250 $\mu \mathrm{s}$	3 ms	
Mask Service Request	MS	450-500 25	4.5 ms	
High Voltage Output	HV	450-500 $\mu \mathrm{s}$	48 ms	
Rear/Front Output	RF	450-500 $\mu \mathrm{s}$	44.5 ms	
Self Test	TE	450-500 $\mu \mathrm{s}$	10.000 ms	
Sweep Mode	SM	450-500 $\mu \mathrm{s}$	4.5 ms	
Data Transfer Mode	MD	450-500 $\mu \mathrm{s}$	4.5 ms	
Interrogate Function	IFU	675-750 15	1603 ms	
Interrogate Error	IER	675-750 $\mu \mathrm{s}$	11.5 ms	
Universal Commands		$\sim 225 \mu \mathrm{~s}$ per byte		
Amplitude Modulation	MA	450-500 $\mu \mathrm{s}$	7.0 ms	
Phase Modulation	MP	450-500 $\mu \mathrm{s}$	7.0 ms	

Table 1-5. Recommended Test Equipment.

Instrument	Critical Specifications	Required for				Recommended Model
		Oper. Ver.	Perf. Tests	Adjugt ments	Trouble. shopting	
Oscilloscope	Vertical   Bandwidth: de to 100 MHz   Deflection: 0.01 V to $10 \mathrm{~V} / \mathrm{div}$ Horizontal   Sweep: $0.05 \mu \mathrm{~s}$ to $1 \mathrm{~s} / \mathrm{div}$ $\times 10$ Magnification   Delayed Sweep	X	x	x	$x$	-hp- 1740A
Electronic Counter	Frequency Measurement   Frequency Range: to 20 MHz   Resolution: 8 digits   Accuracy: $\pm 2$ counts   Time Interval Average A to B   Resolution: 0.1 ns	X	X	X		-hp- 5328A with Opt 01 and 040 or 041
Digital Voltmetar	DC Function   Ranges: $1 \mathrm{~V}, 1 \mathrm{~V}, 10 \mathrm{~V}$. 100 V   Accuracy: $\pm .2 \%$   Respolution: $4 \frac{1}{2}$ digits   AC Function   Ranges: $1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$   Accuracy: $\pm .5 \%$   Resolution: 4 digits			X	X	$-h p-3466 A$
	DC Function   Ranges: $1 \mathrm{~V}, 1 \mathrm{~V}, 10 \mathrm{~V}$, 100 V   Accuracy: $\pm .05 \%$   Restolution: 6 digits   AC Function: True RMS   Ranges: $1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$   Accuracy: $\pm .2 \%$   Resolution: 6 digits   Crest Factor: 4:1	$x$	$x$	x		-hp-3455A
50-ohm Load	Accuracy: $\pm .2 \%$   Power Rating: 1 W	x	x	X	x	-hp-11048C
High Frequency Spectrum Analyzer	Frequency Range: 1 kHz to 100 MHz Amplitude Accuracy: $\pm .5 \mathrm{~dB}$	$\times$	X	x		-hp-141T/8552B/8553B/ 8566A/8568A
Low Frequency Spectrum Analyzer	Frequency Range: $20 \mathrm{~Hz}-50 \mathrm{kHz}$   Amplitude Accuracy: $\pm .5 \mathrm{~dB}$ Spurious Responses: so dB below reference	x	x	x		-hp-3580A/3585A
Sine Wave Signal Source	Frequency: 1 kHz   Amplitude: 1 V rams into $20 \mathrm{k} \Omega$ Frequency Range:		X	x		$\begin{aligned} & \text {-hp- } 204 \mathrm{C} \\ & \text {-hp- } 3335 \mathrm{~A} 1 \mathrm{MHz} \text {-20 } \\ & \mathrm{MHz} \\ & \text { Amplitude Range: to } \\ & \text { + } 7.0 \text { dBm } \\ & \text { Output Impedance: } 50 \mathrm{a} \\ & \text { Phase Noise (integrated): } \\ & 9.9 \mathrm{MHz}<-63 \mathrm{~dB} \\ & 20 \mathrm{MHz}:<-70 \mathrm{~dB} \\ & \text { Spurious: }>75 \mathrm{~dB} \text { below } \\ & \text { fundamental } \end{aligned}$
Double Balanced Mixer	Impedance: 500   Frequency: to 20 MHz		X			$\begin{array}{r} \text {-hp- } 10534 \mathrm{~A} \\ \text { or } 10514 \mathrm{~A} \\ \hline \end{array}$
1 MHz Low Pass Filter	Cut-off Frequency: 1 MHz   Stopband Atten:   50 dB by 4 MHz   Stopband Freq: $4 \mathrm{MHz}-80 \mathrm{MHz}$		X			F882 1MHz Low Pass Filter, Impedance 50S, C Shape Factor, Metal Can, BNC's Allen Avionics, Inc. 224 E. Second St. Mineolà, NY 11501
15 kHz Noise Equivalent Filter	Consisting of:   Resistor: $10 \mathrm{kS} \pm 1 \%$   Capacitor: $1600 \mathrm{pF} \pm 5 \%$		X			$\begin{aligned} & -\mathrm{hp}-0757-0340 \\ & -\mathrm{hp} .0160-2223 \end{aligned}$

Table 1-5. Recommended Test Equipment (Cont'd).

Instrument	Critical Specifications	Requiread for				Recommended Model
		Oper.   Ver,	Perf.   Texts	Adjustments	Trouble. shooting	
AC Voltmeter	Ranges: 0.1 V to 1 V   Frequency Range: $20 \mathrm{~Hz}-1 \mathrm{MHz}$   Input Impedance: $\geq 1$ M $\Omega$   Meter: Log scale   Acc $(100 \mathrm{~Hz}$ to 10 kHz$): \pm 1 \%$		X			-hp- 400 FL
Resistor	$1 \mathrm{kR} \pm 5 \%$			X		-hp-0883-1025
Oscilloscope Probe	Division Ratio: 10 to 1 Impedance: $1 \mathrm{Mn}, 12 \mathrm{pF}$			X	X	-hp. 10041 A
DC Power Supply	Volts: $0-10 \mathrm{~V}$   Amps: 10 mA Floating output		X	$x$		-hp-6214A
Frequency Standard (Required for Option 001 Orly)	Frequency: 5 MHz Accuracy: $1 \times 10^{-9}$			X		-hp-1058
Caleulator (Required for automatic testing)	HP\&AB Control Capability	X	X			-hp-9825A with 98034 A Interface, General I/Q ROM, Extended I/O ROM
Systern Voltmeter	DC Voltage: 0 to $\pm 10 \mathrm{~V}$   Sample/Hold Measurement   External Trigger: Low True TTL   Edge Trigger   Trigger Delay: selectable, $10 \mu 5$ to $140 \mu \mathrm{~s}$		X			-hp-3437A
BNC Ten   Adapter   BNC-to-Triax Adapter	Male-female-female BNC-to-dual banana plug Female BNC-to Male Triax	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$		$\begin{aligned} & -h p-1250-0781 \\ & \text {-hp- } 1250-2277 \\ & \text {-hp- } 1250-0595 \end{aligned}$
Signature Analyzer	Signature: 4-digit hexadecimal Characters:Othru 9,A,C,F,H,P,U Threshold   Logic 1: +2.2 V   Logic 0: +0.5 V   Clock Frequency: $こ 1.5 \mathrm{MHz}$				X	-hp-5004A
Pulse Generator	Pulse Rate: 500 kHz   Pulse Width: $\leq 1 \mu s$   DC Offset: 1 V				$x$	-hp-3312A
Resistor	$56.2 \Omega 1 \% 1 / 8 W$	X	X			-hp-0757-0395
Thermal Converter	Input Impedance: 75 $\mathbf{\Omega}$   Input Voltage: 0.5 V rms   Frequency: 2 kHz to 20 MHz   Frequency Response: $\pm 0.05 \mathrm{~dB}$   2 kHz to 20 MHz		$x$	X		-hp- 11050 A
Resistive Divider	Consisting of:   Resistor: $36.5 \mathrm{Q}\{\% 1 / 2 \mathrm{~W}$   Resistor: $13.7 \Omega 1 \% 1 / 2 \mathrm{~W}$		X			$\begin{aligned} & \text {-hp- 0757-0996 } \\ & \text {-hp- 0698-4998 } \\ & \hline \end{aligned}$
Resistive Divider	Consisting of:   Resistor: $40.2 \Omega 1 \% 1 / 2 \mathrm{~W}$   Resistor: $10 \Omega 1 \% 1 / 2 \mathrm{~W}$		X			$\begin{aligned} & \text {-hp- 0698-5022 } \\ & \text {-hp- } 0757-0984 \end{aligned}$
Resistive Divider	Consisting of:   Resistor: $30 \Omega 1 \% 1 / 4 \mathrm{~W}$   Resistor: $20 \Omega 1 \% 1 / 4 \mathrm{~W}$		$x$			$\begin{aligned} & \text {-hp- 0698-7533 } \\ & \text {-hp- } 0698-6296 \\ & \hline \end{aligned}$
Resistive Divider	Consisting of;   Resistor: $100 \mathrm{k} \mathrm{\Omega} 1 \% 1 / 8 \mathrm{~W}$   Resistor: $162 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}$		X			$\begin{aligned} & -h p-0757-0465 \\ & -h p-0757-0470 \\ & \hline \end{aligned}$
Termination	50 ohm Feedthrough $1 \%$		X			-hp- 11048 C
Thermal Converter	BNC Connectors		X			-hp- 11050 A

# SECTION II <br> INSTALLATION 

## 2*1. INTRODUCTION.

2-2. This section contains instructions for installing and interfacing the Model 3325A Synthesizer/Function Generator. Included are initial inspection procedures, power and grounding requirements, line voltage selection, environmental requirements, installation instructions, HP-IB connection procedure, and instructions for repackaging for shipment.

## 2-3. INITIAL INSPECTION.

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. This instrument was carefully inspected both mechanically and clectrically before shipment. It should be free of mars and scratches and in perfect electrical order upon receipt. Procedures for checking electrical performance are given in Section IV. If there is mechanical damage or defect or if the instrument does not pass the electrical performance test, notify the nearest Hewlett-Packard Sales and Service Office listed at the rear of this manual. If the shipping container is damaged or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping material for the carrier's inspection. The warranty statement is located in the front of this manual.

## 2-5. PREPARATION FOR USE.

## 2-6. Power Requirements.

2-7. The Model 3325A requircs a power source of 100 , 120,220 , or $240 \mathrm{Vac},+5 \%,-10 \%, 48$ to 66 Hz single phase. Power consumption is 100 VA maximum.

## 2-8. Line Voltage Selection.



Before connecting ac power to this instrument, make sure it is set to the line voltage of the power source. Also ensure that the common connection of the power outlet is connected to a protective earth contact.

## WARNING

The line voltage selection switches are located inside the top cover of the instrument. Line voltage selection should be done by trained service personnel only. To avoid electrical shock, make sure the power cord is disconnected before removing the instrument cover.

2-9. The line voltage selection switches are set at the factory to correspond to the line voltage option ordered. This information may be found on the rear panel.

Option	Line Voltage Selected
100	100 V
120	120 V
220	220 V
240	240 V

If it is necessary to change the line voltage selection, access to the switches may be gained by removing the top cover of the 3325A. Make the desired voltage selection as shown in Figure 2-1. Be sure to observe the CAUTION in Figure 2-1.

## 2-10. Power Cable.

2-11. In accordance with international safety standards, this instrument is equipped with a three-wire cable. When connected to an appropriate power line outlet, this cable grounds the instrument cabinet. The type of power cable shipped with each instrument depends on the country of destination. Refer to Figure $2-2$ for the connector configuration and -hp- part numbers of the available power cables.

## 2-12. HP-IB Connections.

2-13. Interconnection data concerning the rear panel HP-IB connector is provided in Figure 2-3. This connector is compatible with the -hp- 10631 (A, B, or C) $\mathrm{HP}-\mathrm{IB}$ cables. The lengths of these cables are as follows:

10631 A	1 meter
10631 B	2 meters
10631 C	4 meters



LINE		
VOLTAGE	$S 1$	$S 2$
100 V	A	D
120 V	B	D
220 V	A	C
240 V	B	C



## CAUTION

WHEN CHANGING THE LINE VOLTAGE SELECTION, MAKE SURE THE CORRECT FUSE IS INSTALLED FOR FOR THE VOLTAGE SELECTED.

LINE VOLTAGE	FUSE	-hp-PART NO.
$100 / 120 V$	$1 A$	$2110-0001$
$220 / 240 V$	$.5 A$	$2110-0012$

AFTER CHANGING LINE VOLTAGE SELECTION,
BE SURE TO INDICATE ON THE REAR PANEL THE NEW VOLTAGE SELECTED.

3325A-29

## SWITCHES VIEWED FROM <br> REAR OF INSTRUMENT

Flgure 2-1. Line Voltage Selection.


Figure 2-2. Power Cables.
Up to 15 instruments (including the controller) may be connected in an HP-IB system. The HP-IB cables have identical stacking connectors on both ends so that several cables can be connected to a single source. As a practical matter, avoid stacking more than three or four cables on any one connector. If the stack gets too large, the force on the stack can produce enough leverage to damage the connector mounting. Be sure that the connector screws are tightened firmly in place to keep it from working loose during use, and be sure to observe the

## CAUTION of Figure 2-3.

2-14. Cable Length Restrictions. System components can be interconnected in virtually any configuration. However, to achieve reliable system performance, proper voltage levels and timing relationships must be maintained. If the system cable is too long, the lines cannot be driven properly and the system will fail to perform. The maximum length of cable that can be used to connect a group of instruments must not exceed 2 meters ( 6.5 ft .) times the number of instruments to be connected, or 20 meters ( 65.6 ft .), whichever is less.

## 2-15. 3325A Listen/Talk Address.

$2-16$. The 3325 A is normally shipped from the factory with the listen address set to ASCII character 1 ; talk address $Q$. The 3325A address switches are located inside the top cover near the center of the instrument. The possible HP-IB addresses are shown in Table 2-1. Set the five switches (marked I through 5) to the correct positions corresponding to the ASCII code address chosen. The 3325A may be set to a "listen only" condition by setting the switch marked LON to the " 1 " position. Be sure to leave the ROM switch in the " 1 " position. This switch is used for troubleshooting only.


PIN	LINE	
1	D101	
2	D102	
3	D103	
4	D104	
13	D105	
14	D106	
15	D107	
16	D108	
5	EOI	
17	REN	
6	DAV	
7	NRFD	
8	NDAC	
9	IFC	
10	SRQ	
11	ATN	
12	SHIELD-CHASSIS GROUND	
18	P/O TWISTED PAIR WITH PIN 6 )	THESE PINS ARE INTERNALLY GROUNDED
19	P/O TWISTED PAIR WITH PIN 7	
20	P/O TWISTED PAIR WITH PIN 8	
21	P/O TWISTED PAIR WITH PIN 9	
22	P/O TWISTED PAIR WITH PIN 10	
23	P/O TWISTED PAIR WITH PIN 11	
24	ISOLATED DIGITAL GROUND	

## \{CAUTION\} <br> をunums

The 3325A contains metric threaded HP-IB cable mounting studs as opposed to English threads. Metric threaded hp$10631 \mathrm{~A}, \mathrm{~B}$, or C HP-IB cable lockscrews must be used to secure the cable to the instrument. Identiffcation of the two types of mounting studs and lockscrews is made by their color. English threaded fasteners are colored silver and metric threaded fasteners are colored black. DO NOT mate silver and black fasteners to each other or the threads of either or both will be destroyed. Metric threaded HP-IB cable hardware illustrations and part numbers follow.

## LOCKSCREW

 1390-0360

LONG MOUNTING STUD 0380-0643


SHORT MOUNTING STUD 0380-0644


Figure 2-3. HP-IB Connector.

## WARNING

Because the address switches are located inside the instrument, they should be set by trained service personnel only. To avoid electrical shock, make sure the power cord is disconnected before removing the instrument cover.

## 2-17. HP-IB Description.

2-18. A description of the HP-IB is provided in Section III of this manual. A study of this information is necessary if you are not familiar with the HP-IB Concept. Additional information concerning the design criteria and operation of the bus is available in IEEE Standard 488-1978 "IEEE Standard Digital Interface for Programmable Instrumentation."

## 2-19. Connecting Oven Option 001.

2-20. In order to use the Oven Option 001, an external connection must be made between the rear panel 10 MHz OVEN OUTPUT and the REF IN connectors. A special connctor for this purpose, -hp- Part No. 1250-1499, is supplied with instruments having Option 00 I .

## 2-21. OPERATING ENVIRONMENT.

## WARNING

To prevent potential electrical or fire hazard, do not expose equipment to rain or moisture.

2-22. In order for the 3325A to meet the specifications listed in Table 1-1, the operating environment must be within the following limits:

Temperature	0 to $+55^{\circ} \mathrm{C}$
Relative Humidity	$95 \%$ at $40^{\circ} \mathrm{C}$
Altitude	4600 meters
	$(15,000$ feet)

## 2-23. Cooling System.

2-24. The cooling fan intake and the exhaust vent are located in the rear panel. When operating the instrument, provide at least 75 mm ( 3 inches) of clearance at the rear, and at least 7 mm ( $1 / 4 \mathrm{inch}$ ) on all sides of the instrument. Failure to allow adequate air circulation will result in excessive internal temperature, reducing instrument reliability.

2-25. It is imperative that the fan filter be inspected frequently and cleaned or replaced as necessary to permit the free flow of air through the instrument. To clean the
filter, remove the four nuts that secure the filter retainer. Remove the filter and flush with soapy water, rinse clean, and air dry.

## 2-26. Bench Operation.

$2-27$. The instrument has plastic feet attached to the bottom panel. The front feet contain foldaway tilt stands for convenience in bench operation. The tilt stand raises the front of the instrument for easier viewing of the control panel. The plastic feet are shaped to make fullwidth modular instruments self-align when they are stacked. A front handle kit, -hp- Part No. 5061-0089 (Option 907), can be installed for ease of handling the instrument on the bench (see Figure 2-4). The kit is shipped with the instrument if Option 907 is also ordered. Otherwise, the front handle kit is available separately by its thp- part number.

## 2-28. Rack Mounting.

2-29. The 3325A can be rack mounted in a rack having an EIA standard width of 482.6 mm ( 19 inches). The instrument can be rack mounted with or without a handle kit by use of the following items:
a. Rack mounting without handles; use Rack Mount Flange Kit -hp- Part No. 5061-0077 (Option 908).
b. Rack mounting with handles; use the combination Rack Mount Flange/Front Handle Kit -hp- Part No. 5061-0083 (Option 909).

## NOTE

> The Rack Mount Flange Kit of item a will not provide the space requirement for rack mounting when used with the bench handle assembly (-hp- Part No. 5060-9899, Option 907). To rack mount with handles, the combination kit of tiem b (Option 909) must be used (see Figure 2-4). If either Option 908 or 909 is ordered, the corresponding kit is shipped with the instrument. Otherwise, both kits are available separately by their -hp-part numbers.

## 2-30. STORAGE AND SHIPMENT.

## 2-31. Environment.

$2-32$. The instrument should be stored in a clean, dry environment. The following environmental limitations apply to both storage and shipment:

Temperature	$-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Relative Humidity	$95 \%$ at $40^{\circ} \mathrm{C}$
Altitude	15,300 meters
	$(50,000$ feet)

Table 2m1. HP—IB Addresses.


NOTE: The Equivalent Codes shown correspond only to the 5 -pit binary switch code. These bits are the same for both listen and talk addresses, and the sixth and seventh bits determine whether the address is listen (01) or talk (10) Some controllers distinguish between listen and talk automatically, requiring only the 5 -bit code equivalent to designate a device.


Figure 2-4. Rack Mount and Handle Kits.

## 2-33. Instrument Identification.

2-34. If the instrument is being returned to HewlettPackard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. In any correspondence, refer to the instrument by model number and full serial number.

## 2-35. Packaging.

2-36. Original Packaging. If the original packaging has been retained, pack the instrument in the same manner as it was received. Be sure to seal the shipping container securely. Also, mark the container FRAGILE to assure careful handling.

2-37. Other Packaging. The following general instructions should be used for repackaging with commercially available materials.
a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewelett-Packard office or service center, attach a tag indicating the type of service required, return address, model number, and full serial number.)
b. Use a strong shipping container. A doublewall carton made of 250 -pound test material is adequate.
c. Use enough shock-absorbing material (3-to-4 inch layer) around all sides of the instrument to provide firm cushion and prevent movement inside the container. Protect the control panel with cardboard.
d. Seal the shipping container securely.
e. Mark the shipping container FRAGILE to assure careful handling.

## SECTION III <br> OPERATION

## 3-1. INTRODUCTION.

3-2. This section of the manual contains instructions for manual operation and HP-IB (Hewlett-Packard In-
terface Bus) programming. The HP-IB information includes the basic concepts of the interface bus operation, with which you may aiready be familiar. Use Table 3-1 to locate the information you need for your particular situation.

Table 3-1. Operating Information,

Paragraph	Content	Paragraph	Content
$3 \cdot 3$	PANEL FEATURES (Figure 1-1)	$3-100$	3325A REMOTE PROGRAMMING
3-5	POWER/WARMUP	3-101	3325A HP-IB Capabilities
3.8	INITIAL CONDITIONS		Table 3-8, Interface Functions
3-10	\$ELF TEST	3-103	Developing an HP-IB Program
$3 \cdot 12$	FRONT/REAR SIGNAL OUTPUT	3-107	Universal and Addressed Commands
3-14	SYNC OUTPUT	3.109	Placing the 3325A in Remote
3-16	EXTERNAL REFERENCE INPUT	3-111	The 3325A Address
3-18	10 MHz OVEN OPTION 001		Table 3-9, \$ummary of 3325A Programming,
3-20	MANUAL PROGRAMMING		ASCII Characters
3-22	Clear Display		Table 3-10, Programming Codes
3-24	Entry Errors	3.113	3325A Data Message Formats
3-26	Function Selection	3-115	Data Transfer Mode
$3-28$	Frequency Entry	3-118	Programming Data Transter Mode
3-30	Frequency Limits	3-120	Programming Entry Parameters
$3 \cdot 32$	Frequency Display and Resolution		Frequency
3-34	Auxiliary Output (Sine Function Only)		Amplitude
$3 \cdot 36$	Amplituơe Entry   Table 3.2, Amplitude Limits of AC Functions		Offset Phase
3.39	Armplitude Calibration		Sweep Start Frequency
3-41	High Voltage Output Option 002		Sweep Stop Frequency
3-43	Table 3-3, High Voltage Output Amplitudes DC Offset		Sweep Marker Frequency Sweep Time
.	Table 3-4 and Figure 3-2, Maximum DC Offset	$\begin{aligned} & 3-122 \\ & 3-124 \end{aligned}$	Programming Waveform Function Programming Binary (ON or OFF) Function
3-46	Phase Entry		High Voltage Output (Qption OQ2)
3.49	Frequency Sweep		Amplitude Modulation
3-55	Sweep Marker		Phase Modulation
3.58	Sweep X Drive Output	3-126	Programming Selection Functions
3-60	Sweep Z Blank Output		Rear Output/Front Output
3-62	Amplitude Modulation		Linear Sweep/Logarithmic Sweep
3.66	Phase Modulation		Data Transfer Mode
3-68	Modify Keys	3-128	Programming Execution Functions
3.70	Store and Recall		Assign Zero Phase Reference
$3-72$	OPERATOR'\$ CHECKS		Perform Amplitude Calibration
3-74	Self Test		Start Single Sweep
3.76	Output Checks		Start Continuous Sweep
3.78	OPERATOR'S MAINTENANCE		Perform Self Test
3.81	HP-IB OPERATION	3-130	Programming Amplitude Units Conversion
3-83	General HP-IB Description	$3 \cdot 132$	Programming Storage Registers
	Figure 3-3, Interface Connections and Bus	3-134	Service Requests
	Structure	3.136	Serial Foll
	Table 3-5. General Interface Management	3-138	Status Byte
	Lines	3.140	Busy Fizg
3.88	Definition of HP-IB Terms and Concepts	3-142	Sweep Fiag
3-89	Basic Device Communication Capability Message Definitions	3-144	Masking or Enabling Service Requests Tabie 3.11, SRQ Mask/Enable Data
	Table 3-6, Definition of Meta Messages	3-146	Interrogating Program Errors
$3-93$	3325 A Resportse to Messages	3-148	Interrogating Entry Parameters
	Table 3-7, Implementation of Messages	$3-150$	Interrogating Function (Waveform)
3.95	HP-IB Work Sheet	3-152	Interrogating Miscellaneous Parameter's
3-97	HP-IB Adouressing	$3 \cdot 154$	
		3-15	3325 A Programming Procedure
Appendices			
	A.3 META MESS	META MESSAGES BLOCK DIAGRAMMED	
	B-3 PROGRAMM	PROGRAMMING THE MODEL 3325 A with the$9825 A$ CALCULATOR	
	9825A.CALCULATOR		


(1) POWER STBY/ON Key. In the STBY position, power is applied to the Oven (Option 001), the HP-IB interface circuits that are external to the isolation barrier, and the High Voltage Output circuits (Option 002), in addition to the power supply circuits.
(2) BLUE prefix key. This key must be pressed to select any of the key functions labeled in blue.
(3) SWEEP key group. These are entry prefix keys for the sweep parameters, plus the sweep start keys. When preceded by the blue prefix key, the sweep parameter keys control sweep modification functions and linear/ log selection.
(4) LOCAL key. Returns 3325A from remote to front panel control unless Local Lockout has been programmed. When preceded by the blue prefix key, this key causes the 3325 A HP-IB address to be displayed in decimal code.
(5) STATUS annunciator group. These annunciators indicate the $3325 \mathrm{~A} \mathrm{HP}-\mathrm{IB}$ status: Remote; Addressed to Talk; Addressed to Listen; Request Service (SRQ).
(6) ENTRY group. Prefix keys for programming signal parameters.
(7) ALPHANUMERIC display. Displays the value of the parameter selected, error codes, failure modes, HP-IB address, amplitude ana phase modulation state.

Figure 3-1. 3325A Front and Rear Panels.
(8) DATA group. This group includes the numeric data keys, the data value suffix keys, the Store and Recall command keys, and the entry Clear key. When preceded by the blue prefix key, the keys in the left column control the modulation functions.

MODIFY group. The horizontal arrow keys select the digit to be modified (indicated by a bright digit), and the vertical arrow keys increment or decrement that digit.
(10) UNITS annunciators. Display the units of volume represented by the numeric display. Entry annunciator indicates that an entry is in progress.
(11) FUNCTION group. These keys select the output signal function or dc only (see Paragraph 3-26).
(12) EXT REF annunciator is on if an external reference or the Option 001 internal 10 MHz oven reference is connected to the rear panel REF IN. Annunciator flashes if the 30 MHz internal reference is not phase locked to the external reference.
(13) MODULATION annunciator is on if either AM or Phase modulation is programmed.
(14) AMPTD CAL key. Automatically calibrates the amplitude and offset of the output signal (see Paragraph 3-39). When preceded by the blue prefix key, initiates a self test operation (see Paragraph 3-10).

## CAUTION

The maximum peak voltage that can be safely applied between chassis and the outer conductor of any of the $3325 A$ input or output signal connectors is $\pm 42 \mathrm{~V}$.
(15) SYNC OUT. A square wave sync signal is available at this connector and also at a rear panel connector, item 28. This signal is always in sync with the output signal crossover point. (Zero volts or dc offset voltage, see Paragraph 3-14.) J2.
(16) AUX $21-60 \mathrm{MHz}$ REAR annunciator. This annunciator is on when the rear panel AUX output is active (see Paragraph 3-34).
(17) REAR ONLY key. In standard instruments, switches signal output from front to rear panet and vice versa. Rear panel output is active when the annunciator in the center of the key is on. In instruments with High Voltage Output Option 002, this key switches from normal to high voltage output, and the annunciator indicates when the high voltage output is on. The key is labeled " $40 \mathrm{Vpp}, 40 \mathrm{~mA}, 0-1 \mathrm{MHz}$ " for Option 002. in Option 002 instruments, no rear panel signal output is provided.
(18) SIGNAL output. Standard output impedance is 50 ohms. High Voltage Output Option 002 output impedance is nominally $<1$ ohm at dc and $<10$ ohms at 1 MHz . Load impedance must be at least 500 ohms. Standard and High Voltage amplifier outputs are fused. $J 1$.
(19) 10 MHz OVEN OUTPUT. This signal is present only in instruments with Option 001. To make use of the Oven Output, it must be connected to the REF $\mathbb{N}$ connector, Item 21. A special connector, hp- Part No. 1250-1499, is supplied with Option 001 for this purpose. J3.
(20) AC POWER input connector. E1.
(21) REF IN. An external reference may be used to phase lock the internal 30 MHz reference (see Paragraph 3-16). J4.
(22) HP-IB connector. Remote control of the 3325A by means of an HP-IB system controller is accomplished through this connector. Part of W6.
(23) REF OUT. A 1 MHz signal from the 3325 A reference circuits is available at this connector, J 5 .
(24) SIGNAL. The output signal is switched to this connector by the front panel REAR ONLY key, ltem 17. J6. IInstruments with Option 002 do not have rear panel signal output.)

## NOTE

The rear panel signal output is inactive (no internal signal connection) if the instrument has the High Voltage Output Option 002 installed. Instructions are given in the Operating and Service Manual, Section VIII, Service Group M, for activating the rear panel signal output in one of two ways: 1/ Placing the standard/high voltage output on the rear panel only, disconnecting the front panel signal output, or 2) Disabling the high voltage output and enabling the standard front/rear output configuration.
If the standard instrument signal output is not terminated by an external 50 -ohm load la high impedance load, for example) undesirable distortion may result, particularly at higher frequencies. Similar conditions may result if the High Voltage Output (Option OO2) is terminated by less than 500 ohms.
(25) BLOWER, B1.
(26) PHASE MOD. Input connector for a phase modulating signal of $\pm 5 \mathrm{~V}$ maximum peak voltage isee Paragraph 3-66). J7.
(27) AMPTD MOD. Input connector for an amplitude modulating signal of $\pm 5 \mathrm{~V}$ maximum peak voltage (see Paragraph 3-62). J8.
(28) SYNC OUT. This output is identical to the output at the front panel sync connector, Item 15. J10.
(29) AUX $21-60 \mathrm{MHz}$. A signal is available at this output when the sine wave frequency is programmed above 21 MHz (see Paragraph 3-34). J9.
(30) $z$ BLANK. A TTL compatible output is present during a sweep operation (see Paragraph 3-60). J11.
(31) $X$ DRIVE. This output progresses from 0 V to +10 V during a sweep-up operation (see Paragraph 3-58). $J 12$.
(32) MARKER. This TTL compatible output goes low at the selected marker frequency during a sweep up, and high at completion of the sweep (see Paragraph 3-55). J13.
(33) Power Transformer, 11.
(34) Line Fuse, F1.

## NOTE

The HP-IB is Hewlett-Packard Company's implementation of IEEE Standard 488-1978.

## 3-3. PANEL FEATURES.

3-4. Figure 3-1 identifies and describes the functions of the front and rear panel controls, indicators, and connectors.

### 3.5. POWER/WARM-UP.

3-6. The Model 3325A requires a power source of 100 , 120,220 , or $240 \mathrm{Vac},+5 \%-10 \%, 48$ to 66 Hz single phase. The selection of line voltage and fuse is described in Paragraph 2-8 and Figure 2-1.

3-7. The 3325A POWER switch has two positions, STBY and ON. Power is applied to some circuits at any time the instrument is connected to the ac power source. If the instrument has the Oven Assembly Option 001 installed, it is important that it remain connected to the power source to maintain a constant oven temperature, eliminating the need for a long warm-up period. If an instrument with the Oven Assembly has been disconnected from ac power no longer than 24 hours, a 15 -minute warmup period is sufficient to bring the reference frequency to within $\pm \mathrm{I} \times 10^{-7}$ of final value.

### 3.8. INITIAL CONDITIONS.

3-9. After the POWER switch has been set to ON, the instrument status will be as follows:

Function	Sine
Frequency	Hz
Amplitude	1 mV p-p
Phase.	0 deg
DC Offset	0 V
Front Signal Output	
Sweep	Linear
Start Frequency	1 MHz
Stop Frequency	10 MHz
Marker Frequency.	. 5 MHz
Time.	. $1 . \mathrm{sec}$

## NOTES

1. If the display reads OSC FAIL the frequency synthesis circuits are not operating properly.
2. If $A-C A L$ FAIL appears in the display momentarily after turn-on, any one of the three AMPTD CAL tests could be incorrect. Perform a SELF TEST operation to identify the failure.
3. If either of the above conditions occurs, refer the instrument to qualified service personnel for repair.

### 3.10. SELF TEST.

3-11. The self test operation is initiated by pressing the bluc prefix key, then the SELF TEST key (AMPTD CAL). This test uses the control, ROM, and control clock circuits to perform the following checks:

LED check: Turns on all LED's for about 2 seconds
Check 1: Tests AMPTD CAL of the sine wave
Check 2: Tests AMPTD CAL of the square wave
Check 3: Tests AMPTD CAL of the triangle wave
Following each check the display indicates either PASS or FAIL for approximately one second. If all tests pass, this indicates that approximately $60 \%$ of all circuits are operating properly.

## 3-12. FRONT/REAR SIGNAL OUTPUT.

## \{CAUTION3

The maximum peak voltage that can be safely applied between chassis and the outer conductor of any of the 3325 A input or output signal connectors is $\pm 42 \mathrm{~V}$.

3-13. The standard Model 3325A provides selectable front or rear panel 50 -ohm signal outputs. The rear panel signal output is selected by pressing the REAR ONLY key. The lighted indicator in the center of this key denotes that the signal output is at the rear panel.

## NOTE

The rear panel SIGNAL output is not present on instruments equipped with the High Voltage Output Option 002.

### 3.14. SYNC OUTPUT.

3-15. A square wave sync output is provided at BNC connectors on both the front and rear panels. This sync signal is always in phase with the output signal, with the sync transition occurring at the signal zero crossing, or when the signal crosses the dc offset voltage. The output. impedance of either front or rear panel sync output is approximately 50 ohms. When connceted to a 50 -ohm coaxial cable that is terminated by a 50 ohm resistive load, the sync signal levels are as follows:

Low Level $=<0.2 \mathrm{~V}$
High level $=>1.2 \mathrm{~V}$
NOTE
If a sync output is connected to a 50 -ohm coaxial cable that is terminated by a high impedance load ( $\leq 1$ megohm) the voltage levels are approximately twice the values given above. However, the improper ter-
mination of the $50-\mathrm{ohm}$ system will cause ringing at the positive and negative transifions of the synte signal.

### 3.16. EXTERNAL REFERENCE INPUT.

3-17. The 3325A may be operated with an external reference to control the standard 30 MHz internal reference oscillator frequency. The external reference level must be greater than 0 dBm ( 50 ohms), and the frequency must be within 10 PPM of 10 MHz or a submultiple thereof down to $1 \mathrm{MHz}(10,5,3.33,2.5$, or 1 MHz ). The front panel EXT REF annunciator will light to indicate that an external reference is being used. The internal reference oscillator is phase locked to the external reference, and a phase lock detector circuit causes the EXT REF light to flash if synchronization is lost.

## 3-18. 10 MHz OVEN OPTION 001.

3-19. Option 001 is a temperature stabilized 10 MHz oscillator which provides improved frequency stability (see specifications in Table 1-1). The output from this oscillator is at the rear panel 10 MHz OVEN OUTPUT connector. This output must be connected to the EXT REF input. A special connector, hp- Part No, 1250.1499, is provided with Option 001 for this purpose.

### 3.20. MANUAL PROGRAMMING.

3-21. The following paragraphs describe the procedures for operating the 3325A from the front panel. Also included are the limits for each parameter.

## 3-22. Clear Display.

3-23. Pressing the CLEAR key (in the left column of the DATA group) clears the display to zero. This key is useful when an error is made while entering data.

## 3-24. Entry Errors.

3-25. The word "Error" will appear in the display for approximately one second when an error in programming occurs. The incorrect entry will not be accepted.

ASCII   Numeric	Error
1	Entry parameter out of bounds (for example, Freq こ 61 MHz)
2	Invalid delimiter
3	Frequency too large for function (for example, Function tn Triängle, Freq こ 11 kHz )
4	Sweep time too small or too large
5	Offset incompatible with amplitude, or amplitude incompatible with offset
6	Sweep frequency too large for function; Sweep bandwidth too small; Start frequency too small (log sweep); Start frequency greater than stop frequency (log sweep)
7	Unrecognizable mnemonic received
8	Unrecognizable data character received
9	Option does not exist (High Voltage or Rear/Front)

### 3.26. Function Selection.



3-27. Any of the five functions may be selected by pressing the appropriate FUNCTION key. A light in the center of the key indicates the present function. Pressing the same key the second time removes the ac signal, setting the output to zero unless a de offset has been programmed (sec Paragraph 3-43). When the ac signal is removed in this way, the instrument automatically displays dc offset, and the de offset entry key light comes on. The ac signal can be restored by pressing the FUNCTION key again. The output signal for cach function is centered about zero volts unless a de offset has been programmed.

## NOTE

The standard instrument signal output must be terminated by an external 50-ohm load or sine wave distortion and square wave overshoot may result, particularly at higher frequencies.

## 3-28. Frequency Entry.



## NOTE

A lighted indicator in the center of any entry key denotes it as the active entry parameter. For example, if the FREQ entry key indicator is on, it is not necessary to press that key before entering data.
3-29. Enter frequency by first pressing the PREQ ENTRY key, then the numerical data, followed by the data suffix (delimiter) key ( $\mathrm{Hz}, \mathrm{kHz}, \mathrm{MHz}$ ). Numerical data must be entered most significant digit first, entering the decimal in the proper place. The frequency parameter is stored in the 3325A when the delimiter key is pressed.

## 3-30. Frequency Limits.

3-31. The minimum frequency for all functions is $1 \mu \mathrm{~Hz}$. The nominal maximum frequency for each function is shown below the function select key on the front

Table 3-2. Amplitude Limits of AC Functions.

Function	Peak-to-Peak		rms		$d 8 \mathrm{~m}(50 \Omega)$	
	Max.	Min.	Max.	Min.	Max.	Min,
Sine	10 V	1 mV	3.536 V	0.354 mV	$+23.98$	-56.02
Square	10 V	7 mV	5.000 V	0.5 mV	+26.99	-53.01
Triangle	10 V	1 mV	2.888 V	0.289 mV	+22.22	-57.78
t. Ramp	10 V	1 mV	2.888 V	0.289 mV	$+22.22$	-57.78

panel. However, becausc of the overrange capability of the 3325 A , the maximum frequency for cach function is as shown bclow:

Sine wave	20999999.999 Hz
Square wave	10999999.999 Hz
Triangle	10999.999999 Hz
Positive slope ramp	10999.999999 Hz
Negative slope ramp	10999.999999 Hz

### 3.32. Frequency Display and Resolution.

3-33. Frequency is always displayed in Hz , even though the entry may have been made in kHz or MHz . For $\mathrm{cx}-$ ample, ann entry of 1.2 MHz is displayed as 1200000.0 Hz . Non-significant zeroes to the right of the first digit following the decimal point are not displayed except during a "modify" condition (see Paragraph 3-68). The maximum resolution is $1 \mu \mathrm{~Hz}$ for frequencies up to and including 99999.999999 Hz , and 1 mHz for frequencies of 100000.000 Hz and higher.

## 3-34. Auxiliary Dutput (Sine Function Only).

3-35. A rear panel auxiliary output can be used for frequencies above 19 MHz to a maximum of 60999 $999.999 \mathrm{H} \neq$. The output tevel is a nominal 0 dBm into 50 ohms. The output automatically switches to the AUX output when frequencies of $21000000,000 \mathrm{~Hz}$ or higher are programmed. For this reason, the AUX output is labeled " $21-60 \mathrm{MHz}$ ". Prequencies between 19 MHz and 21 MHz can be obtained at the AUX output only by first entering 21 MHz or higher, then entering the desired frequency. For example, if the desired frequency is 19.5 MHz , first enter "FREQ 21 MHz ", then " 19.5 MHz ". Then, if a front panel SIGNAL output of 19.5 MHz (or any frequency between 19 MHz and 21 MHz ) is desired, enter any frequency 19 MHz or lower, then enter 19.5 MHz .

## NOTE

Only one signal output is active at one time. A lighted " $21-60 \mathrm{MHz}$ Rear" annunciator indicates that the rear panel $A U X, 0 \mathrm{dBm}, 21-60$ MHz output is active. A lighted "Signal, Rear Only" annunciator indicates that the rear panel signal output is active. Neither light on, indicates the front panel signal output is active.

## 3-36. Amplitude Entry.



3-37. Amplitude is entered and displayed with 4-digit resolution. Press the AMPTD ENTRY key, then the numerical data, followed by the $\mathrm{V}, \mathrm{mV}$, Vrms, mV ims, or dBm key. The $V$ and $m V$ keys enter peak-to-peak value of ac functions. Maximum and minimum amplitudes for each function are shown in Table 3-2.

3m3. The 3325A will convert an amplitude value between peak-to-pcak, rms, or dBm for any function. For example, if a sine wave amplitude of 10 V p-p has been entered, press the Vrms or mVrms key to display the same amplitude as 3.536 Vrms , or press the dBm key to display the value as $(+123.98 \mathrm{dBm}$.

## 3-39. Amplitude Calibration.



3-40. The 3325A will calibrate the output signal when the AMPTD CAL key is pressed. The output goes to less than $4 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$ while the calibration is in process. An amplitude and offset calibration is performed automatically whenever the function is switched and at instrument turn-on.

## NOTE

If A-CAL FAIL appears in the display momentarily after an AMPTD CAL operation, the instrument should be referred to qualified service personnel for repair.

### 3.41. High Voltage Output Option 002.



3-42. The high voltage output is selected by pressing the key in the lower right corner of the front panel. This option provides a maximum output of 40 V p-p into a high impedance. The load resistance must be greater than 500 ohms or distortion will result, particularly at higher frequencies. To assure square wave overshoot $<5 \%$ of peak-to-peak output, the total capacitance connected to the output should be $<500 \mathrm{pF}$. The same entry procedures and display features apply as in the standard operation. Maximum and minimum amplitudes are shown in Table 3-3. Maximum frequency for sine and square wave functions is $1 \mathrm{MHz}(10 \mathrm{kHz}$ for triangle and ramps).

## NOTE

The rear panel signal output is inactive (no internal signal connection) if the instrument has the High Voltage Output Option 002 installed. Instructions are given in the Operating and Service Manual, Section VIII, Service Group $M$, for activating the rear panel signal output in one of two ways: I) Placing the standard/high voltage output on the rear panel only, disconnecting the front panel signal output, or 2) Disabling the high voltage output and enabling the standard front/rear output configuration.

### 3.43. DC Offset.



Table 3-3. High Voltage Output Amplitudes (Option 002).

Function	Peak-to-Peak		rms	
	Max.	Min.	Max.	Min.
	40 V	4 mV	14.14 V	1.42 mV
Square	40 V	4 mV	20.0 V	2.0 mV
Triangle	40 V	4 mV	11.55 V	1.16 mV
$\pm$ Ramp	40 V	4 mV	11.55 V	1.16 mV

3-44. Offset Only, No AC Function. When no ac function is present, the dc voltage output may be programmed from 0 mV to $\pm 5 \mathrm{~V}$, with 4 digit resolution. When no ac function is present, the DC OFFSET entry prefix is automatically selected. It is necessary merely to enter the numerical data followed by the V or mV delimiter. The rms keys cannot be used to enter offset.

## NOTE

When the High Voltage Output is selected (Option 002), minimum amplitude for $d c$ only (no ac function) is 0.01 mV and maximum is 20.0 V .

3-45. Offset with AC Function. When dc offset is to be added to any ac function, there are minimum and maximum offset limits which must be observed. These limits are affected by the ac voltage and the resulting attenuator settings, which are shown in Table 3-4. Figure 3-2 is a set of graphs which show the approximate maximum dc offset permissible for a given ac peak-to-peak voltage. The following equation may be used to determine maximum offset voltage.

Maximum dc offset $=\frac{5}{A}-\frac{\text { Amptd }}{2}$
Where $\mathrm{A}=$ Attenuator factor (from Table 3-4) Amptd $=$ Amplitude in V p-p of the ac function

## NOTES

1. If an attempt is made to enter a dc offset that is too great for the amplitude already programmed, 'Error 5'" will appear in the display momentarily, and the dc offset entry will not be accepted.
2. After a dc offset has been entered, if the amplitude (ac) is then increased beyond the level where the amplitude and offset are compatible, 'Error 5"' will appear in the display momentarily, and the ac amplitude entry will not be accepted.
3. The minimum and maximum permissible dc offset voltages when the High Voltage Output is selected (Option 002) may be determined by multiplying the amplitude and offset values in Table 3-4 by four. This also applies for Figure 3-2. Change the above equation (for determining maximum dc offset) to the following:

Maximum dc offset $=\frac{20}{A}-\frac{A m p t d}{2}$
4. Resolution of $a$ dc offset entry (with ac function) is determined by the resolution of the ac amplitude.

## 3-46. Phase Entry.



3-47. The phase of the SIGNAL output can be shifted up to $\pm 719.9^{\circ}$ with respect to the 1 MHz REF OUT (rear panel). Phase shift entry resolution is $0.1^{\circ}$. To program phase shift, press the PHASE ENTRY key, enter
number of degrees of phase desired, then press the "deg'" key. For a negative phase shift, press the " - " key before entering the numerical data. For square wave frequencies below 25 kHz , phase changes greater than $25^{\circ}$ may result in a phase shift $\pm 180^{\circ}$ from the desired amount.
3-48. After entering a phase shift, the new phase may be assigned the zero phase position, and subsequent changes in phase referenced to that point. To assign zero phase, press the blue entry prefix key, then press ASGN ZERO $\emptyset$ (PHASE) key.

## 3-49. Frequency Sweep.



3-50. Frequency sweep is phase continuous over the full frequency range; that is, there are no discontinuities in the output waveform. When the instrument is turned on, the sweep mode is set to linear, and the parameters are set as follows:


Table 3-4. Maximum DC Offsegt with any AC Function.

AC Amplitude Entry   (peak-to-peak)		Maximum DC Offset (+ or -)	Minimum DC Offset Entry	Range	Attenuation Factor
$\begin{gathered} 1.000 \mathrm{mV} \\ \text { to } \\ 3.333 \mathrm{mV} \\ \hline \end{gathered}$	with   with	$\begin{aligned} & 4.500 \mathrm{mV} \\ & 3.333 \mathrm{mV} \end{aligned}$	0.001 mV	7	$A=1000$
$\begin{gathered} 3.334 \mathrm{mV} \\ \text { to } \\ 9.999 \mathrm{mV} \end{gathered}$	with   with	$\begin{aligned} & 14.99 \mathrm{mV} \\ & 11.66 \mathrm{mV} \end{aligned}$	0.001 mV	6	$A=300$
$\begin{gathered} 10.00 \mathrm{mV} \\ \text { to } \\ 33.33 \mathrm{mV} \\ \hline \end{gathered}$	with with	$\begin{aligned} & 45.00 \mathrm{mV} \\ & 33.33 \mathrm{mV} \end{aligned}$	0.010 mV	5	$A=100$
$\begin{gathered} 33.34 \mathrm{mV} \\ \text { to } \\ 99.99 \mathrm{mV} \\ \hline \end{gathered}$	with with	$\begin{aligned} & 149.9 \mathrm{mV} \\ & 116.6 \mathrm{mV} \\ & \hline \end{aligned}$	0.010 mV	4	$A=30$
$\begin{gathered} 100.0 \mathrm{mV} \\ \text { to } \\ 333.3 \mathrm{mV} \\ \hline \end{gathered}$	with with	$\begin{aligned} & 450.0 \mathrm{mV} \\ & 333.3 \mathrm{mV} \\ & \hline \end{aligned}$	0.100 mV	3	$A=10$
333.4 mV to 999.9 mV	with with	$\begin{aligned} & 1.499 \mathrm{~V} \\ & 1.166 \mathrm{~V} \end{aligned}$	0.100 mV	2	$A=3$
$\begin{gathered} 1.000 \mathrm{~V} \\ \text { to } \\ 9.998 \mathrm{~V} \end{gathered}$	with   with	$\begin{aligned} & 4.500 \mathrm{~V} \\ & 0.001 \mathrm{~V} \end{aligned}$	1.000 mV	1	$A=1$




Figure 3.2. Maximum DC Offset With AC Functions.

## NOTE

The Marker Frequency must be lower than Stop Frequency by a sufficient amount to permit the Marker pulse width to be approximately 400 microseconds. See Paragraph 3-55.

To change any of the sweep parameters, press the appropriate SWEEP entry key, then enter the desired data. To select LOG sweep, press the blue prefix key and then the LOG (TIME) key. The log indicator should light. The sweep mode is linear unless this light is on.


3-51. Linear Sweep. In linear mode, either CONTINUOUS or SINGLE sweep may be used. Single sweep is from START to STOP frequency, and either START or STOP may be the higher frequency. To begin a single sweep:

Press "RESET/START" key to set output and display to the start frequency selected and reset the X Drive ramp.

Press "RESET/START" key again to start the sweep.


The output frequency sweeps to the STOP frequency selected and remains there. This frequency appears in the display. Continuous sweep is up-down-up, etc., and begins when the "START CONT" key is pressed. Continuous sweep may be stopped by pressing the "START CONT" key again, or by pressing "START SINGLE", "FREQ ENTRY", or "PHASE ENTRY". The display will indicate the frequency at which the sweep stopped. The sweep will stop while any other parameter is being changed, then will restart. Pressing "AMPTD CAL", "SELF TEST", "ASSIGN ZERO Ø", or changing the function will also stop continuous sweep.


3-52. Log Sweep. In either single or continuous log sweep mode, the stop frequency must be higher than the start frequency, and sweep is up only. (Continuous sweep is start to stop, start to stop, etc.) The minimum bandwidth for $\log$ sweep is one decade. Single $\log$ sweep is a linesegmented log approximation in one-tenth decade seg-
ments, and continuous log sweep is a two-segment log approximation.

## NOTE

Because of the computation time required by the control circuits in log sweep, the actual stop frequency (which is displayed at the end of a single sweep) will be higher than the selected stop frequency, but always within $0.25 \%$. The error decreases as sweep time is increased.

3-53. Sweep Time. The maximum time per sweep (up or down) for all sweep modes is 99.99 seconds, with .01 second resolution for times $\geq 1$ second, and .001 second resolution for times $<1$ second. Minimum times are as follows:

```
Linear sweep, single or continuous. . 0.010 s
Log sweep
 Single. 2.000 s
 Continuous. 0.100 s
```


## NOTE

In single log sweep, the sweep time is increased by the processing time required between segments. The time increase (in seconds) is approximately equal to

$$
.045\left(\begin{array}{cc}
10 \log \quad & \frac{\text { stop frequency }}{\text { start frequency }}
\end{array}\right)
$$

3-54. Sweep Bandwidth. The maximum sweep bandwidth is the full frequency range for the function selected, except that in log sweep, the minimum frequency is 1 Hz . The minimum bandwidth for log sweep is one decade. Minimum bandwidth for each function (linear sweep) is as follows:

```
Sine. (10 mHz/s) }\times\mathrm{ (sweep time)
Square........... (5 mHz/s) }\times\mathrm{ (sweep time)
Triangle. (0.5 mHz/s) }\times\mathrm{ (sweep time)
Ramps..........(1 mHz/s) }\times\mathrm{ (sweep time)
```

For sweep bandwidths of less than 100 times the minimum, Bandwidth selected should be an integral multiple of the minimum. In linear sweep mode the sweep bandwidth may be multiplied or divided by two by pressing the blue prefix key and then " $\Delta \mathrm{fx} 2$ " or " $\Delta \mathrm{f} \div 2$ ". These bandwidth modification keys do not operate in log sweep mode.

### 3.55. Sweep Marker.

3-56. The marker frequency may be set to any point within the sweep band up to within approximately 400 microseconds of the stop frequency. If the marker frequency is set beyond this point, the stop frequency will automatically be increased so that the marker pulse is
approximately 400 microseconds wide. The following equation may be used to determine the approximate maximum marker frequency:
Max. marker freq. $=$ stop freq, $-\frac{.0004 \times \text { bandwidth }}{\text { sweep time }}$
The rear pand MARKER output is at TTL compatible voltage levels. It is High at the start of a sweep up, goes Low at the selected marker frequency, then High again at the stop frequency. No marker output is present during swecp down or during a log sweep. Set the marker frequency by pressing the "MKR FREQ" key and entering the numerical data and the frequency suffix.

3-57. The sweep band can be moved up or down to center on the marker frequency by pressing the blue prefix key and then the MKR - CF(MKR FREQ) key. This does not change the sweep bandwidth unless either the new upper or lower limit would be beyond the frequency limit for the present function.

## 3-58. Sweep X Drive Dutput.

3-59. The rear panel X DRIVE output is as follows:
Linear sweep:
Single: 0 V at start, increasing linearly to $>+10 \mathrm{~V}$ at stop, whether the sweep is up or down. Remains at essentially this voltage until reset prior to the start of another sweep. (Voltage will drift downward less than $10 \mathrm{mV} / \mathrm{s}$.)
Continuous: Increases linearly from 0 V to $>+10 \mathrm{~V}$ during sweep up, then goes to 0 V at beginning of sweep down and remains at 0 V during sweep down.

Log sweep: Starts at 0 V and increases to $>+10 \mathrm{~V}$ with the sweep segments.

## NOTE

The X DRIVE output has a nominal voltage of $+10.5 V$ at the end of a sweep. This final voltage is specified to be greater than 10.0 V to ensure compatibility with oscilloscopes having a horizontal sensitivity of 10.0 V for full-screen deflection.
$X$ DRIVE output voltage is linear with time in both linear and log sweep modes.

### 3.60. Sweep Z Blank Output.

3-61. The Z BLANK output voltages are TTL compatible, and the output logic levels are as follows:

Linear sweep:
Single: Goes LOW at start of sweep, HIGH at stop, whether the sweep is up or down. Remains until start of next sweep.
Continuous: LOW during sweep up, HIGH during sweep down.

Log sweep: Goes Low at start frequency, HIGH at stop. In single sweep, remains HIGH until start of next sweep. In continuous sweep, is HIGH momentarily at stop frequency.

When the Z BLANK output is low, it is capable of sinking current through a relay or other device. The maximum ratings are:

Maximum current sink: 200 mA Allowable voltage range: 0 V to +45 V dc Maximum power (voltage at output $x$ current): 1 W

## 3-62. Amplitude Modulation.



3-63. To program amplitude modulation, press the blue prefix key, then press the "AM ON" (STORE) key. To remove the modulation, press the blue key, then "AM OFF" (RECALL). The display shows "A ON" or "A OFF" momentarily to indicate the status of the amplitude modulation. The status of phase modulation ( P ON or P OFF) is displayed at the same time. The modulation input must be connected to the rear panel AMPTD MOD input. The impedance of this input is $20 \mathrm{k} \Omega$ ( $10 \mathrm{k} \Omega$ when AM is OFF).

3-64. When amplitude modulation is programmed, the amplitude of the output signal (with no modulation) is halved; however, the display still indicates the programmed amplitude. Then, when the output (carrier) is modulated $100 \%$, the maximum amplitude of the modulated output equals the programmed amplitude. A modulation input of approximately 5 V peak results in $100 \%$ modulation. Modulation frequency may be 0 to 50 kHz . If amplitude modulation is ON when 3325 A functions other than sine wave are selected, the output may be gated, depending on the level of the modulation input. Amplitude modulation should be used only with the sine wave function, and the modulation input should not exceed $\pm 10 \mathrm{~V}$ peak.
3-65. A de voltage may be applied to the AMPTD MOD input to control the 3325 A output level, or a pulse may be used to gate the output. Approximately +5 V cuts off the output signal, while approximately -5 V doubles the output. (Maximum output is 10 V p-p.) DC or pulse inputs should not exceed $\pm 5 \mathrm{~V}$ peak.
3.66. Phase Modulation.


3-67. To program phase modulation, press the blue prefix key, the the "ØM ON" (CLEAR) key, and to remove phase modulation, press the blue key, then " $\varnothing \mathrm{M}$ OFF" ( - ). The phase modulation signal at the rear panel PHASE MOD input may be up to $\pm 10 \mathrm{~V}$ peak. The input impedance is $10 \mathrm{k} \Omega$. The modulating signal frequency may be dc to 5 kHz . An input of $\pm 5 \mathrm{~V}$ results in the following approximate phase deviation ( $\pm 170^{\circ}$ per volt for sine function):

3325A Function	Phase Deviation
Sine	$\pm 850^{\circ}$
Square	$\pm 425^{\circ}$
Triangle	$\pm \pm 2.5^{\circ}$
$\pm$ Ramp	$\pm 85^{\circ}$

## 3-68. Modify Keys.



3-69. The numerical data of any parameter may be changed by use of the MODIFY keys. First press the prefix key of the parameter to be modified, placing the information in the display. Next, press the $\langle$ or $\rrbracket$ key to move the bright digit cursor to the digit you want to modify. Then press the $\widehat{\langle }$ or key momentarily to increase or decrease the value of that digit by 1 . If the modify key is held, the digit will continue to increment or decrement after a slight delay. As the modified digit passes 9 (incrementing) or 0 (decrementing) the digit to its left will increment or decrement.

### 3.70. Store and Recall.

3-71. An entire program may be stored in any one of 10 registers by pressing the "STORE $0-9$ " key, then the register number. This stores all the information that is in the current program memory. Other programs may then be entered. All stored information is lost when power is removed from these circuits by setting the POWER switch to STBY or disconnecting ac power from the instrument.


#### Abstract

NOTE Any phase information stored is invalid when recalled because the instrument performs an amplitude calibration on RECALL. Phase relationship between the output signal and the reference is not maintained when AMPTD CAL occurs.


### 3.72. OPERATOR'S CHECKS.

3-73. The following checks provide the operator with a means of determining whether the instrument is operational. They are not intended to verify any specifications. If the instrument fails any of these checks, it should be referred to qualified service personnel for repair.

### 3.74. Self Test.

3-75. Press the blue prefix key, then SELF TEST (AMPTD CAL). All the front panel display and annunciator LED's should light for approximately two seconds, then the instrument performs an automatic calibration of the sine, square, and triangle functions and the display indicates momentarily whether each test passed or failed. The dc offset is also checked in these tests.

## NOTE

If the display reads OSC FAIL at any time, the frequency synthesis circuits are not functioning properly. Refer the instrument to qualified service personnel for repair.

## 3-76. Output Checks.

3-77. An oscilloscope (-hp- 1740A or equivalent) is required for these checks. Connect the 3325A output through a 50 -ohm feedthru termination (-hp- 11048C) to the oscilloscope input (input dc coupled), or set the 1740A input switch to 50 ohms.

## FUNCTIONS

a. Make the following 3325A keyboard selections:

$$
\begin{aligned}
& \text { FUNCTION............................ . . Sine } \\
& \text { FREQUENCY............................. } 2 \mathrm{kHz} \\
& \text { AMPLITUDE . . . . . . . . . . . . . . . . . . } 10 \mathrm{~V} \text { p-p }
\end{aligned}
$$

b. Set the oscilloscope controls as follows:

c. Adjust oscilloscope controls for a stable display, which should show a sine wave approximately two divisions peak-to-peak and one cycle per division.
d. Select square wave, triangle, positive slope ramp, and negative slope ramp and verify that each function indieates the same frequency and peak-to-peak amplitude.

## AMPIITUIDE AND DC OFFSET

c. Set the 3325A as follows:

```
FUNCTION Square
I'REQUENCY 2 kHz
AMPI.ITUDE. 10 V p-p
```

1. Set the oscilloscope controls as follows:
```
Vertical.......................... . . . V/div
Horizontal..................... . 0.5 ms/div
Trigger . Auto
```

g. Oscilloscope display should show one square wave per division, 5 divisions peak-to-peak vertical. This checks the outpus with no attenuation. Actual display will depend greatly upon the accuracy of the oscilloscope amplifiers and display.
h. (hange 3325 A amplitude to 1 V p-p, and change oscilloscope vertical to $.2 \mathrm{~V} /$ div. Oscilloscope display should again be 5 divisions peak-to-peak. This checks the $\div 3$ attenuator section.
i. Change 3325A amplitude to 500 mV p-p, and change osciltoseope vertical to $.1 \mathrm{~V} / \mathrm{div}$. Oscilloscope display should be 5 divisions peak-to-peak. This checks the : 10 attenuator section.
$j$. Change 3325A amplitude to 50 mV p-p, and change oscilloscope vertical to $.01 \mathrm{~V} / \mathrm{div}$. The square wave display should be 5 divisions peak-to-peak. This cheeks the :- 100 attenuator section.
k. Press the 3325A SQUARE WAVE FUNC.TION key to renove the square wave output. The indicator in the DC OFFFSET Entry key should light and the 3325A display should show 0.0 mV .

1. Set the oscilloscope vertical control to $2 \mathrm{~V} / \mathrm{div}$. Ground the input and set the trace to the center line. Set input to de coupled.

1m. Enter 5 V offset in the 3325A. The oscilloscope race should be 2.5 divisions above the center line. Finter

5 V offset in the 3325 A . The oscilloscope trace should go to 2.5 divisions below the center line.
n. Enter 0 V offset in the 3325 A . Trace should be on the center line.

## IREQUENCY

0. Set the 3325A as follows:
```
FUNCTION . Sine
FREQUENCYY. 100 Hz
AMPI.ITUDE. }10\mathrm{ V p-p
```

p. Set the oscilloscope controls as follows:

Vertical.............. . . . . . . . . . . . . 2 V/div
Horizontal. . . . . . . . . . . . . . . . . . . . I ms/div
q. Oscilloscope display should show one cycle of sine wave, which should be free of any apparent itregularities.
r. Enter 20 MHz in the 3325A. Change oscilloscope horizontal to . $05 \mu \mathrm{~S} /$ div. Oscilloscope should display one cycle of sine wave per division.

## HIGH VOLIAGE OUTPUT (OPTION

2) 

$s$. Remove the 50 -ohm feedthru termination between the $3325 \wedge$ output and the oscilloscope input. Press the key in the lower right corner of the 3325 A front panelto select the High Voltage output.

1. Set the 3325 A as follows:
FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kHz
rREQUENC.Y . . . . . . . . . . . . . . . . $40 \mathrm{~V} \mathrm{p}-\mathrm{p}$
u. Set the oscilloscope controls as follows:

Vertical. . . . . . . . . . . . . . . . . . . . . $10 \mathrm{~V} /$ div
Hori\%ontal...................... $0.5 \mathrm{~ms} / \mathrm{div}$
v. The oscilloscope display should show a sine wave four divisions peak-to-peak, one cycle per division. This checks the high voltage output amplifier.

### 3.78. OPERATOR'S MAINTENANCE.

3-79. Maintenance by the operator is limited to cleaning or replacing the rear panel fan filter, or replacing the ac line fuse on the rear panel. Generally, if the ac line fuse requires replacement there is a failure within the instrument, which should be referred to qualified service personnel. Disconnect the ac line cord belore replacing the fuse. Be sure to use the correct replacement fuse:

Nominal Line Voltage	Fuse	-hp- Part No.
$100 / 120 \mathrm{~V}$	1 A	$2110-0001$
$220 / 240 \mathrm{~V}$	0.5 A	$2110-0012$

3-80. The fan filter should be inspected frequently and cleaned or replaced as necessary to allow free flow of air. To remove the filter, disconnect ac power from the instrument and remove the four nuts that secure the filter retainer. Remove the filter and wash thoroughly with soapy water, rinse elcan, and air dry.

### 3.81. HP-IB OPERATION.

3-82. The Model 3325A is remotely controlled by means of the Hewlett-Packard Interface Bus (HP-IB).

The following information gives a general description of the HP-IB and defines the terms, concepts, and messages used in an HP-IB system. It also lists the capabilitics and requirements for programming the 3325A. Program examples using a specific HewlettPackard calculator as the system controller may be found in the Supplemental Programming Information, Appendix 3-A at the rear of this section.

## NOTE

> HP-IB is Hewlett-Packard Company's implementation of IEEE Standard 488-1978, 'Standard Digital Interface for Programmable Instrumentation.

### 3.83. General HP-IB Description.

3-84. The HP-IB is a parallel bus of 16 active signal lines grouped into three sets according to function, to interconnect up to 15 instruments. Figure 3-3 is a diagram of the interface connections and bus structure.

3-85. Eight signal lines form the first set and are termed "data"' lines. The data lines carry coded messages which represent addresses, program data, measurements, and status bytes. The same data lines are used for input and
output messages in bit-parallel, byte-serial form. Normally, a seven-bit ASCII code represents each piece (byte) of data, leaving the eighth bit available for parity checking.

3-86. Data transfer is controlled by means of an interlocked "handshake" technique which permits data transfer (asynchronously) at the rate of the slowest device participating in that particular conversation. The three data byte transfer control lines which implement the handshake form the second set of lines.

3-87. The remaining five general interface management lines form the third set and are used in such ways as activating all the connected devices at once, clearing the interface, etc. Table 3-5 defines each of the management lines.

### 3.88. Definition of HP.IB Terms and Concepts.

Byte - A unit of information consisting of eight binary digits (bits).

Device - Any unit that is compatible with the IEEE Standard 488-1978.

Device Dependent - 1. An action a device performs in response to information sent on the HP-IB. The action is characteristic of an individual device and may vary from device to device. 2. The data required to communicate with a particular device.


Figure 3-3. Interface Connections and Bus Structure.

Table 3.5. General Interface Management Lines.

Name	Mnemonic	Description
Attention	ATN	Enables a device to interpret data on the bus as a controler command (command mode) or data transfer (Data Mode).
\|nterface Clear	IFC	Initializes the HP-18 system to an idie state (no activity on the bus.)
Service   Request	SRO	Alerts the controller to a need for communication.
Remote Enable	REN	Places instruments under remote program control.
End Or Identify	EQI	Indicates last data transmission during a data transfer sequence; used with ATN to poll devices for their status.

Operator - The person that operates either the system or any device in the systern.

Address - The characters sent by a controller to specify which device will send information on the bus and which device(s) will receive information. A device may also have its address lixed so that it may only receive information (listen only) or only send information (talk only).

Polling - Polling is a means by which a controller can identify a device that needs interaction with it. The controller may poll devices for their operational condition onc at a time, which is termed a serial polt, or as groups of devices simultaneously, which is termed a parallel poll.

## 3-89. Basic Device Communication Capability.

3-90. Devices which communicate along the interface bus fall into threc basic categories.

Talkers - Devices which send information on the bus when they have been addressed.

Listeners - Devices hich receive information sent on the bus when they have been addressed.

Controllers - Devices that can specify the talker and listener(s) for an information transfer. The controller can be an active controller or a system controller. The active controller is defined as the current controlling device on the bus. The system controller can take control of the bus even if it is not the active controller. Each system can have only one system controller, even if several controllers have system control capability.

### 3.91. Message Definitions.

3-92. Information is transferred on the HP-IB from one device to one or more other devices in quantities
called "messages". Some of the messages consist of two basic parts, the address portion and the information portion. Others are gencral messages to all devices. Messages can be classificd into twelve types, which are referred to as "meta messages". These are defined in Table 3-6. A block diagram presentation of meta messages and their implementation will be found in Ap. pendix $\wedge-3$ at the rear of this section.

## NOTE

The meta message in itself is not a program code or an HP-IB command. It is only intended as a tool to translate a program written as an algorithm into the controller's code.

## 3-93. 3325A Response to Messages.

3-94. The 3325A is capable of implemeriting only those messages indicated in Table 3-7. In order for those messages to be implemented, certain bus actions are required, which are shown in the Interface Functions column.

### 3.95. HP-IB Work Sheet.

3-96. A work sheet is provided at the end of this section for listing the address and message capabilitics of cach instrument in your HP-IB system. When this sheet is filled out, it will provide a summary of the system capabilitics.

### 3.97. HP-IB Addressing.

3-98. Certain messages require that a specific talker and listener be designated, Each instrument on the bus has its own distinctive listen and/or talk address which distinguishes it from other devices. The 3325A receives programming instructions when addressed to listen. When addressed to talk, it will respond to the instructions it received prior to being addressed to talk, such as an interrogation or serial poll.

3-99. Addressing usually takes the form of "universal unlisten, device talk, device(s) listen". The universal unlisten command removes all listeners from the bus, allowing only the listener(s) designated by the device(s) listen parameter to receive information. The information is sent by the talker designated by the device talk parameter. The system controller may designate itself as either talker or listener.

## 3-100. 3325A REMOTE PROGRAMMING.

## 3-101. 3325A HP.IB Capabilities.

3-102. Table 3-8 lists the HP-IB capabilities of the 3325A, which are compatible with IEEE Standard 488-1978.

Table 3.6. Definition of Meta Messages.

\begin{tabular}{|c|c|c|c|}
\hline Messuge \& Definition \& Message \& Definition <br>
\hline Data

Trigger \& | The actual information binary bytes) which is sent from a talker to one of more listeners. The information or data can be in a numeric form or a string of characters. |
| :--- |
| The trigger message causes the listening device(s) to perform a device dependent action. | \& Status Byta \& A byte that represents the status of a single device. One bit indicates whether the device sent the required service message and the remaining 7 bits indi cate operational conditions defined by the device. This byte is sent from the talking device in response to a "Serial Foll' operation performed by a con. <br>

\hline Clear \& A clear message will cause a device(s) to return to a predefined device-dependent state. \& \multirow[t]{3}{*}{Status Bit} \& | troller. |
| :--- |
| A byte that represents the operational conditions of a group of | <br>

\hline Remote \& The remote message causes the listening device(s) to switch from local front panel control, to remote program control. This mossage remains in effect so that devices subsequently addressed to listen will go into remote operation. \& \& devices on the bus. Egch de. vice responds on a particular bit of the byte thus identifying a device dependent condition. This bit is typically sent by devices in response to a parallel poll operation. <br>
\hline Local

Local Lockout \& | This message clears the remote message from the listening de. vice(s) and returns the device(s) to local front panel control. |
| :--- |
| The local lockout message is implemented to prevent the de. vice operator from manually in. | \& \& be used by a controller to speci fy the particular bit and logic level that a device will respond with wher a parallel poll operation is performed. Thus, more than one device may respond on the same bit, <br>

\hline Clear Lockout and Set Local \& | hibiting remote program control. |
| :--- |
| This message causes all devices to be removed from the local lockout mode and revert trs local. | \& Pass Control \& This message transters the bus management responsibilities from the active controller to another controller. <br>


\hline Reguire Service \& | It will also clear the remute message for all devices. |
| :--- |
| A device can send this message at any time to signify that it needs some type of interaction with the controller. The message is cleared by the device's status byte message if it no longer requires service. | \& Abort \& The system controller sonds the abort message to unconditionally assume control of the bus from the active controller. The message will terminate all bus communications but does not implement the clear message. <br>

\hline
\end{tabular}

## 3-103. Developing an HP.IB Program.

3-104. Basically, the 3325A is programmed remotely in the same manner as it is programmed manually. The sequence in which the various parameters are programmed is not important. At the end of this section (IIt) there is a summary of the HPalB Programming Codes. This chart may be removed from the manual and/or copied to be used as a programming reference.

## NOTE

It may be necessary ate refer to some parcegrtaphs on mamual operation for descriptions of certain signals and requirements.

3-105. Several steps are needed to develop an HP-IB program.
a. Completely define the operation(s) the system is required to perform.
b. Write the program in flowethart or algorithm form. (An algorithm may be defined as a fixed step-bystep procedure for finding a solution to a problem.) Use the key words for meta messages shown in Table $3-6$ in developing the program. The twelve key words are repeated here lor reference.

[^0]Table 3-7. 3325A Implementation of Messages.


Status Byte
*Status Bit
*Pass Control
Abort
*Not implemented by the 3325A

## NOTE

The meta message in itself is not a program code or an HP-IB command. It is only intended as a tool to translate a program written as an algorithm into the controller's code.

Table 3.8. Interface Functions.

Code	Function
SH1	Source handshake capability
AH1	Acceptor handshake capability   T6      Basic talker; Serial Poll; Unaddressed to talk if   addressed to listen
L3	Basic listener; Listen Only; Unaddressed to
	listen if addressed to talk
SR1	Service Request capability
RL1	Remote/Local capability
PP0	No parallel poll capability
DC1	Device clear capability
DT0	No device trigger capability
C0	No controller capability
E1	Open collector bus drivers

c. Definc the operation in program codes that the instrument can use. Each instrument has its own set of program codes which are ASCll characters. The 3325A program codes are shown beginning with Paragraph 3-120 or Table 3-9.
d. Convert the program into the controller's language. The conversion information is supplied with cach controller. For example, the -hp- 9825 A Calculator Extended I/O Manual provides a chart for program code conversion.

## NOTE

Examples for controlling the 3325A with a specific Hewlett-Packard calculator are provided in the Supplemental Programming Information. Appendix B-3 at the rear of this section.

3-106. Block diagrams and explanations of the meta messages that apply to the 3325A are shown in Appendix A-3 at the rear of this section.

### 3.107. Universal and Addressed Commands.

3-108. The 3325A will respond to the following universal and addressed commands, which are sent in the command mode (ATN true).

Mnemonic	Command	ASCII Code
Universal:		
*DCL.	Device Clear	DC4
LLO	Local Lockout	DC1
MLA	My Listen Address	(selectable)
MTA	My Talk Address	(selectable)
SPD	Scrial Poll Disable	EM
SPE	Scrial Poll Enable	CAN
UNL	Unlisten	$?$
UNT	Untalk	-
Addressed:		
GTL	Go to Local	SOH
*SDC	Selected Device Clear	EOT

*DCL and SDC commands set the 3325A to its initial turn-on conditions (see Paragraph 3-8) and cause an AMPTD CAL operation. Any data in the HP-IB input buffer is lost. The storage registers, SRQ masking, and the status byte are not affected.

### 3.109. Placing the 3325A in Remote.

3-110. The 3325A will go to Remote when ATN is true, REN is true, and it receives its listen address.

3-111. The 3325A Address.

3-112. The 3325A address is normally set at the factory to:

	ASCil	5-Bit	(5-Bit Octal Equivalcnt)	
	Character	Octal	Decimal	Hexadecimal
Listen	1	21	17	11
Talk	$Q$	21	17	11

The 3325A can be made to display its address in decimal code by pressing the blue prefix key and the BUS ADRS (LOCAL) key.

## NOTES

1. All programming is shown in ASCII code.
2. Table 3-9 is a summary of the 3325A program data messages and program times. Table 3-10 lists program codes in binary, octal, decimal, and hexadecimal. At the end of this section (III) there is also a summary of the HP-IB programming codes. This chart may be removed from the manual and/or copied to be used as a programming reference.

## 3. The following front panel key actions cannot be remotely programmed:

Modify group
Sweep bandwidth $\times 2$
Sweep bandwidth $\div 2$
Set sweep center frequency to marker frequency
Display bus address
Clear display
4. The 3325 A must be set to REMOTE and addressed to LISTEN before it will accept device dependent data messages.

## 3-113. 3325A Data Message Formats.

3-114. The following are valid programming strings (data messages) for the 3325 A :

```
Mnemonic, Data, Delimiter, EOS
Mnemonic, Data, EOS
Mnemonic, EOS
I, Mnemonic, EOS
```

Where $I$ is the ASCII character $I$ and EOS is the end-ofstring character, which is required for Data Transfer Mode 2 (see following paragraphs). Valid EOS characters are:

```
LF \(=\) Line Feed \(=12\) octal
* \(=\) Asterisk \(=52\) octal
```

Table 3.9. Summary of 3325A Programming (ASCII Characters).**

Parameter or Operation	Mnamonies ASCII Code	Data	ASCll   Code   Delimiters	Approximate Programming Time*
Datta Transfer Mode Data Mode I Data Mode 2	$\begin{aligned} & =M D \\ & =M D \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	NA	$\mathrm{MD}=4.5 \mathrm{~ms}$
Function	=FU	$\begin{aligned} & 0=\text { DC Only } \\ & 1=\text { Sine } \\ & 2=\text { Square } \\ & 3=\text { Triangle } \\ & 4=\text { Positive Ramp } \\ & 5=\text { Negative Ramp } \end{aligned}$	NA	$\mathrm{FU}=1500 \mathrm{~ms}$
Frequency	= FR	$\leq 11$ Digits and Decimal	$\begin{array}{\|l\|l\|} \hline \mathrm{HZ}=\text { Hertz } \\ \mathrm{KH}=\text { Kilohertz } \\ \mathrm{MH}=\text { Megahertz } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{FR}=7.0 \mathrm{~ms} \\ & \text { Each digit or decimal }=2.8 \mathrm{~ms} \\ & \mathrm{HZ}, \mathrm{KH}, \text { or } \mathrm{MH}=12.5 \mathrm{~ms} \\ & \hline \end{aligned}$
Amplitude	= AM	$\leftrightarrows 4$ Digits and Decimal. Also - sign if negative $\mathrm{dBm} .+\operatorname{sign}$ is valid but not required.	$\begin{aligned} & \text { VO }=\text { Volts }(p-p) \\ & M V=\text { Millivolts }(p-p) \\ & V R=\text { Volts rms } \\ & M R=\text { Millivolts rms } \\ & D B=d B m \end{aligned}$	$\begin{aligned} & \mathrm{AM}=6.8 \mathrm{~ms} \\ & \text { Each digit, decimal or decimal }=2.8 \mathrm{~ms} \\ & \mathrm{VO} \text { or } \mathrm{MV}=90 \mathrm{~ms} \\ & \mathrm{VR} \text { or } \mathrm{MR}=130 \mathrm{~ms} \\ & \mathrm{DB}=250 \mathrm{~ms} \end{aligned}$
DC Offset	$=0 \mathrm{~F}$	$\leq 4$ Digits and Dectimal. Also sign if negative do offset. + sign is valid but not required.	$\begin{aligned} & \text { VO }=\text { Volts } \\ & \text { MV }=\text { Millivolts } \end{aligned}$	$O F=6.8 \mathrm{~ms}$   Each digit, decimal, or $-\operatorname{sign}=2.8 \mathrm{~ms}$ VO or $\mathrm{MV}=82 \mathrm{~ms}$
Phase	$=\mathrm{PH}$	$\begin{aligned} & \leq 4 \text { Digits } \\ & - \text { minus sign } \end{aligned}$	DE $=$ Degrees	$\mathrm{PH}=5 \mathrm{~ms} ; \mathrm{DE}=28 \mathrm{~ms}$   Each digit and $-\operatorname{sign}=2.8 \mathrm{~ms}$
Sweep Start Frequency Sweep Stop Frequency Sweep Marker Frequency	$\begin{aligned} & =\mathrm{ST} \\ & =\mathrm{SP} \\ & =\mathrm{MF} \end{aligned}$	$\leftrightarrows 11$ Digits and Decimal	$\begin{aligned} & \hline \text { HZ }=\text { Hertz } \\ & \text { KH }=\text { Kilohertz } \\ & \text { MH }=\text { Megahertz } \end{aligned}$	$S T, S P$, or $M F=7.0 \mathrm{~ms}$ Eapch digit or decimal $=2.8 \mathrm{~ms}$ $\mathrm{HZ}, \mathrm{KH}$, or $\mathrm{MH}=10.3 \mathrm{~ms}$
Sweep Time	$=\mathrm{TI}$	s 4 Digits and Decimal	$\mathrm{SE}=$ Seconds	$\mathrm{Tl}=5.5 \mathrm{~ms} ; \mathrm{SE}=7.0 \mathrm{~ms}$   Each digit and decimal $=2.8 \mathrm{~ms}$
Sweep Mode Linear Logárithmic	= SM	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	NA	$\mathrm{SM}=4.5 \mathrm{~ms}$
Rear or Front Panel Output Front Panel Rear Panel	= RF	$\begin{array}{r} 1 \\ 2 \\ \hline \end{array}$	NA	$\mathrm{RF}=44.5 \mathrm{~ms}$
Store Program Recall Program	$\begin{aligned} & =S R \\ & =R E \end{aligned}$	1 Digit, 0-9	NA	$\begin{aligned} & \mathrm{SR}=11 \mathrm{~ms} ; \\ & \mathrm{RE}=1700 \mathrm{~ms} \end{aligned}$
Execution Functions Assign Zaro Phase Perform Auto-Cal Start Single Sweep Start Continuous Sweep Perform Self-Test	$\begin{aligned} & =A P \\ & =A C \\ & =S S \\ & =S C \\ & =T E \end{aligned}$	NA   NA	NA   NA	$\begin{aligned} & A P=5.2 \mathrm{~ms} \\ & A C=1500 \mathrm{~ms} \\ & S S=300 \mathrm{~ms} \\ & S C=300 \mathrm{~ms} \\ & T E=10,000 \mathrm{~ms} \end{aligned}$
Interrogate Program Error	$\pm$ IER	NA	NA	IER $=11.5 \mathrm{~ms}$
Interrogate Entry Parameters   Frequancy   Amplitude   Offset   Phase   \$weep Start Frequency   Sweep Stop Frequency   Swajep Marker Frequency   Sweep Time	$\begin{aligned} & =I F R \\ & =\mid A M \\ & =10 F \\ & =1 P H \\ & =1 S T \\ & =1 S P \\ & =1 \mathrm{MF} \\ & =1 T \mathrm{C} \\ & =1 \end{aligned}$	NA	NA	IFR=10 ms $1 \mathrm{AM}=9.8 \mathrm{~ms}$ IOF $=9.8 \mathrm{~ms}$ $\mathrm{IPH}=8 \mathrm{~ms}$ IST $=10 \mathrm{~ms}$ $15 P=10 \mathrm{~ms}$ $\mathrm{IMF}=10 \mathrm{~ms}$  
Interrogate Function	= IFU	NA	NA	$\mathrm{FFU}=1603 \mathrm{~ms}$
Mask Service Requests	= MS	See Para. $3.144$	NA	$\mathrm{MS}=4.5 \mathrm{~ms}$
Binary (ON/OFF) Functions High Voltage Output Amplitude Modulation Phase Modulation	$\begin{aligned} & =\mathrm{HV} \\ & =\mathrm{MA} \\ & =\mathrm{MP} \end{aligned}$	$\begin{aligned} & \mathrm{OFF}=0 \\ & \mathrm{ON}=1 \end{aligned}$	NA	$\begin{aligned} & \mathrm{HV}=48 \mathrm{~ms} \\ & \mathrm{MA}=7.0 \mathrm{~ms} \\ & \mathrm{MP}=7.0 \mathrm{~ms} \end{aligned}$

[^1]** Spe Note 2 following Paragraph 3-1 12.

Table 3-10. Programming Codes.

Instruction	ASCII Characters	Binary Code	Octal   Code	Decimal Code	Hexadecima! Code
Entry Frequency	$\begin{aligned} & \mathrm{F} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 1000110 \\ & 1010010 \end{aligned}$	$\begin{aligned} & 106 \\ & 122 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 82 \\ & \hline \end{aligned}$	$\begin{aligned} & 46 \\ & 52 \\ & \hline \end{aligned}$
Amplitude	$\begin{aligned} & \mathrm{A} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & 1000001 \\ & 1001101 \end{aligned}$	$\begin{aligned} & 101 \\ & 115 \end{aligned}$	$\begin{aligned} & 65 \\ & 77 \end{aligned}$	$\begin{aligned} & 41 \\ & 4 D \end{aligned}$
Offect	$\begin{aligned} & 0 \\ & \mathrm{~F} \end{aligned}$	$\begin{array}{lllllll} 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ \hline \end{array}$	$\begin{aligned} & 117 \\ & 106 \\ & \hline \end{aligned}$	$\begin{aligned} & 79 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 F \\ & 4 E \end{aligned}$
Phase	$\begin{aligned} & P \\ & H \end{aligned}$	$\begin{aligned} & 1010000 \\ & 1001000 \end{aligned}$	$\begin{aligned} & 120 \\ & 110 \end{aligned}$	$\begin{aligned} & 80 \\ & 72 \end{aligned}$	$\begin{aligned} & 50 \\ & 48 \end{aligned}$
Sweep Start Frequency	$\begin{aligned} & \mathrm{S} \\ & \mathbf{T} \\ & \hline \end{aligned}$	$\begin{array}{llllll} 1010 & 1 & 1 \\ 10 & 1 & 0 & 1 & 0 & 0 \end{array}$	$\begin{aligned} & 123 \\ & 124 \\ & \hline \end{aligned}$	$\begin{aligned} & 83 \\ & 84 \\ & \hline \end{aligned}$	$\begin{array}{r} 53 \\ 54 \\ \hline \end{array}$
Stop Frequency	$\begin{aligned} & \$ \\ & \rho \end{aligned}$	$\begin{array}{llllll} 1010 & 1 & 0 & 1 \\ 10 & 1 & 0 & 0 & 0 & 0 \\ \hline \end{array}$	$\begin{aligned} & 123 \\ & 122^{\circ} \end{aligned}$	$\begin{aligned} & 83 \\ & 80 \end{aligned}$	$\begin{aligned} & 53 \\ & 50 \end{aligned}$
Marker Frequency	$\begin{gathered} \mathrm{M} \\ \mathrm{~F} \end{gathered}$	$\begin{aligned} & 1001101 \\ & 1000110 \end{aligned}$	$\begin{aligned} & 115 \\ & 106 \end{aligned}$	$\begin{aligned} & 77 \\ & 70 \end{aligned}$	$\begin{aligned} & 4 \mathrm{D} \\ & 46 \end{aligned}$
Time	$\begin{aligned} & \hline T \\ & \mathrm{i} \end{aligned}$	$\begin{array}{lllll} 1010 & 0 & 0 & 0 \\ 10010 & 0 & 1 \end{array}$	$\begin{aligned} & 124 \\ & 111 \end{aligned}$	$\begin{aligned} & 84 \\ & 73 \end{aligned}$	$\begin{aligned} & 54 \\ & 49 \end{aligned}$
Start Continuous	$\begin{aligned} & \mathrm{S} \\ & \mathrm{C} \end{aligned}$	$\begin{array}{llllll} 1 & 0 & 1 & 0 & 1 & 1 \\ 10 & 0 & 0 & 0 & 1 & 1 \end{array}$	$\begin{aligned} & 123 \\ & 103 \\ & \hline \end{aligned}$	$\begin{aligned} & 83 \\ & 67 \end{aligned}$	$\begin{array}{r} 53 \\ 43 \\ \hline \end{array}$
Start Single (must be sent twice)	$\begin{aligned} & 5 \\ & \$ \\ & \hline \end{aligned}$	$\begin{array}{r} 1010011 \\ 1010011 \\ \hline \end{array}$	$\begin{aligned} & 123 \\ & 123 \end{aligned}$	$\begin{aligned} & 83 \\ & 83 \\ & \hline \end{aligned}$	$\begin{array}{r} 53 \\ 53 \\ \hline \end{array}$
Sweep Mode	$\begin{aligned} & \mathrm{S} \\ & \mathrm{M} \\ & \hline \end{aligned}$	$\begin{array}{llllll} 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \end{array}$	$\begin{aligned} & 123 \\ & 115 \\ & \hline \end{aligned}$	$\begin{aligned} & 83 \\ & 77 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 \\ & 4 \mathrm{D} \end{aligned}$
Numerical Data   0   1   2   3   4   5   6   7   8   9   (decimal)   - (minus)	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{array}{lllllll} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ \hline \end{array}$	$\begin{aligned} & 060 \\ & 061 \\ & 062 \\ & 063 \\ & 064 \\ & 065 \\ & 066 \\ & 067 \\ & 070 \\ & 071 \\ & 056 \\ & 055 \end{aligned}$	$\begin{aligned} & 48 \\ & 49 \\ & 50 \\ & 51 \\ & 52 \\ & 53 \\ & 54 \\ & 55 \\ & 56 \\ & 57 \\ & 46 \\ & 45 \end{aligned}$	$\begin{aligned} & 30 \\ & 31 \\ & 32 \\ & 33 \\ & 34 \\ & 35 \\ & 36 \\ & 37 \\ & 38 \\ & 39 \\ & 2 \mathrm{E} \\ & 20 \end{aligned}$
Data Suffix (Delimiter) Hertz	$\begin{array}{r} H \\ Z \\ \hline \end{array}$	$\begin{array}{r} 1001000 \\ 1011010 \\ \hline \end{array}$	$\begin{aligned} & 110 \\ & 132 \\ & \hline \end{aligned}$	$\begin{aligned} & 72 \\ & 90 \end{aligned}$	$\begin{array}{r} 48 \\ 5 \mathrm{~A} \\ \hline \end{array}$
Kilohertz	$\begin{aligned} & \mathrm{K} \\ & \mathrm{H} \end{aligned}$	$\begin{array}{lllll} 1001011 \\ 100 & 0 & 0 & 0 & 0 \end{array}$	$\begin{aligned} & 113 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 48 \\ & 48 \end{aligned}$
Megahertz	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & 10011001 \\ & 1001000 \end{aligned}$	$\begin{aligned} & 115 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & 77 \\ & 72 \end{aligned}$	$\begin{aligned} & 4 \mathrm{D} \\ & 4 \mathrm{~A} \end{aligned}$
Volts (pヶp or dc)	$\begin{aligned} & \mathrm{V} \\ & 0 \end{aligned}$	$\begin{array}{lllllll} 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 \end{array}$	$\begin{aligned} & 126 \\ & 117 \end{aligned}$	$\begin{aligned} & 86 \\ & 79 \end{aligned}$	$\begin{aligned} & 56 \\ & 4 F \end{aligned}$
Millivolts (p-p or de)	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~V} \end{aligned}$	$\begin{array}{lllllll} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \end{array}$	$\begin{aligned} & 115 \\ & 126 \end{aligned}$	$\begin{aligned} & 77 \\ & 86 \end{aligned}$	$\begin{aligned} & 4 D \\ & 56 \end{aligned}$
Volts rms	$\begin{aligned} & \mathrm{V} \\ & \mathrm{R} \end{aligned}$	$\begin{array}{lllllll} 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \end{array}$	$\begin{aligned} & 126 \\ & 122 \end{aligned}$	$\begin{aligned} & 86 \\ & 82 \end{aligned}$	$\begin{aligned} & 56 \\ & 52 \end{aligned}$
Millivolts rms	$\begin{gathered} \hline \mathrm{M} \\ \mathrm{R} \\ \hline \end{gathered}$	$\begin{array}{r} 1001101 \\ 1010010 \\ \hline \end{array}$	$\begin{aligned} & 115 \\ & 122 \\ & \hline \end{aligned}$	$\begin{aligned} & 77 \\ & 82 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \mathrm{D} \\ & 52 \end{aligned}$
d8m	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~B} \end{aligned}$	$\begin{array}{llllll} 1000 & 1 & 0 \\ 1000 & 0 & 1 & 0 \end{array}$	$\begin{aligned} & 104 \\ & 102 \end{aligned}$	$\begin{aligned} & 68 \\ & 66 \end{aligned}$	$\begin{aligned} & 44 \\ & 42 \end{aligned}$
Degrees	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{array}{llllll} 10001 & 0 & 0 \\ 1000010 & 1 \end{array}$	$\begin{aligned} & 104 \\ & 105 \end{aligned}$	$\begin{aligned} & 68 \\ & 69 \end{aligned}$	$\begin{aligned} & 44 \\ & 45 \end{aligned}$
Seconds	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{E} \end{aligned}$	$\begin{array}{llllll} 10 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{array}$	$\begin{aligned} & 123 \\ & 105 \end{aligned}$	$\begin{aligned} & 83 \\ & 69 \end{aligned}$	$\begin{aligned} & 53 \\ & 45 \end{aligned}$
Store	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{R} \end{aligned}$	$\begin{array}{llllll} 10 & 10 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{array}$	$\begin{aligned} & 123 \\ & 122 \end{aligned}$	$\begin{aligned} & 83 \\ & 82 \end{aligned}$	$\begin{aligned} & 53 \\ & 52 \end{aligned}$
Recall	$\begin{aligned} & \hline \dot{R} \\ & E \end{aligned}$	$\begin{aligned} & 1010010 \\ & 1000101 \end{aligned}$	$\begin{aligned} & 122 \\ & 105 \end{aligned}$	$\begin{aligned} & 82 \\ & 69 \end{aligned}$	$\begin{aligned} & 52 \\ & 45 \end{aligned}$

Table 3-10. Programming Codes (Cont'd).

Instruction	ASCII   Characters	Binary Code	Octal Code	Decimal Code	Hexadecimal Code
High Voltage Output	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~V} \end{aligned}$	$\begin{array}{llllll} 100 & 1 & 0 & 0 \\ 10 & 1 & 0 & 1 & 1 & 0 \end{array}$	$\begin{aligned} & 110 \\ & 126 \end{aligned}$	$\begin{aligned} & 72 \\ & 86 \end{aligned}$	$\begin{aligned} & 48 \\ & 56 \end{aligned}$
Modulation-Amplitude	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1001101 \\ & 1000001 \end{aligned}$	$\begin{aligned} & 115 \\ & 101 \end{aligned}$	$\begin{aligned} & 77 \\ & 65 \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$
Modulation-Phase	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & 1001101 \\ & 1010000 \end{aligned}$	$\begin{aligned} & 115 \\ & 120 \end{aligned}$	$\begin{aligned} & 77 \\ & 80 \end{aligned}$	$\begin{aligned} & 4 \mathrm{D} \\ & 50 \end{aligned}$
Rear or Front Output	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1010010 \\ & 1000710 \end{aligned}$	$\begin{aligned} & 122 \\ & 106 \end{aligned}$	$\begin{aligned} & 82 \\ & 70 \end{aligned}$	$\begin{aligned} & 52 \\ & 46 \end{aligned}$
Data Transfer Mode	$\begin{gathered} \hline \mathrm{M} \\ \mathrm{D} \end{gathered}$	$\begin{aligned} & 1001101 \\ & 1000100 \end{aligned}$	$\begin{aligned} & 115 \\ & 104 \end{aligned}$	$\begin{aligned} & 77 \\ & 68 \end{aligned}$	$\begin{aligned} & 40 \\ & 44 \end{aligned}$
Assign Zero Fhase Reference	$\begin{aligned} & \text { A } \\ & \text { P } \end{aligned}$	$\begin{aligned} & 1000001 \\ & 10010000 \end{aligned}$	$\begin{aligned} & 101 \\ & 120 \end{aligned}$	$\begin{aligned} & 65 \\ & 80 \end{aligned}$	$\begin{aligned} & 41 \\ & 50 \end{aligned}$
Perform Auto Cal,	$\begin{aligned} & \bar{A} \\ & \text { C } \end{aligned}$	$\begin{aligned} & 1000001 \\ & 1000011 \end{aligned}$	$\begin{aligned} & 701 \\ & 103 \end{aligned}$	$\begin{aligned} & 65 \\ & 67 \end{aligned}$	$\begin{aligned} & 47 \\ & 43 \end{aligned}$
Perform Self Test	$\begin{aligned} & \hline T \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 10101100 \\ & 1000101 \\ & \hline \end{aligned}$	$\begin{aligned} & 124 \\ & 105 \\ & \hline \end{aligned}$	$\begin{aligned} & 84 \\ & 69 \end{aligned}$	$\begin{aligned} & 54 \\ & 45 \\ & \hline \end{aligned}$
Mask \$R@	$\begin{gathered} \mathrm{M} \\ \mathrm{~S} \end{gathered}$	$\begin{array}{lllllll} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 \end{array}$	$\begin{aligned} & 115 \\ & 123 \end{aligned}$	$\begin{aligned} & 77 \\ & 83 \end{aligned}$	$\begin{aligned} & 40 \\ & 53 \end{aligned}$
Interrogate (Parameter)	1	1001001	111	73	49
Interrogate Error	$\begin{aligned} & \mathrm{I} \\ & \mathrm{E} \\ & \mathrm{R} \end{aligned}$	$\begin{array}{lllllll} 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \end{array}$	$\begin{aligned} & 111 \\ & 105 \\ & 122 \end{aligned}$	$\begin{aligned} & 73 \\ & 69 \\ & 82 \end{aligned}$	$\begin{aligned} & 49 \\ & 45 \\ & 52 \end{aligned}$
EOS (End of String) Line Feed Asterisk	$\underset{\#}{\text { LF }}$	$\begin{array}{lllll} 0 & 0 & 0 & 010 \\ 0 & 1 & 0 & 1 & 0.10 \end{array}$	$\begin{aligned} & 12 \\ & 52 \end{aligned}$	$\begin{aligned} & 10 \\ & 42 \end{aligned}$	$\begin{gathered} A \\ 2 A \end{gathered}$

All spaces (40 octal), carriage returns ( 15 octal), commas ( 54 octal), and all lower case alphabetics are ignored by the 3325A.

## NOTE

A program string may program one parameter or all parameters. For example, the string "FU2FR10KHAM3VO" programs the following:
$F U 2=$ Square wave function
$F R I O K H=10 \mathrm{kHz}$
$A M 3 V O=3 V p-p$

The EOS character should follow the complete string, or a maximum of 48 characters (see Paragraphs 3-115 through 3-118).

### 3.115. Data Transfer Mode.

3-116. The 3325A accepts data from the HP-IB in either of two modes. If speed of communication is a critical factor on your HP-IB system, Mode 2 is preferrablc. The characteristics of the two modes are:

Data Mode 1. The 3325A turns on in Data Mode 1. In this mode, each device dependent character (byte) is processed when received.

Line feeds and Asterisks (EOS characters) are ignored. No other device dependent data communications are permitted on the bus until the entire 3325A program string has been accepted and all but the last character processed.

Data Mode 2. Device dependent characters are accepted and stored in an internal buffer and not processed until the EOS character is received or the buffer is filled ( 48 bytes). Consequently, other communications on the bus are permitted after the program string has been accepted (at the rate of approximately 150 to 200 mieroseconds per character). If the program string contains 48 characters or more, the 3325A will hold up the bus while it processes the 48 characters before accepting and storing the rest of the string. Because the instrument turns on in Data Mode 1, Mode 2 must be programmed remotely. It will then remain in Mode 2 until Mode 1 is programmed or until the POWER switch is set to STBY.

3-117. While the 3325 A is processing data it will accept and respond to universal commands. For this reason, when operating in Mode 2, the controller can send a program string ( 48 characters or less) to the 3325 A , and
unaddress the 3325A to listen and then communicate with another device. However, if the string is more than 48 characters, the bus will be held up until the first 48 characters have been processed and the remaining characters accepted. In order for the bus to be used during 3325A processing time for communication between other devices, a program string greater than 48 characters should be divided and an EOS character sent after (or at a convenient place before) the 48 th byte. The remaining program can then constitute a second string. While the 3325 A is processing input information, a "Busy" llag is set in the status byte (see Paragraph 3-136). This flag can be used to determine when the 3325A has finished processing.

## NOTE

The 3325A will handshake bus communications even though the POWER switch is set to STBY. This will not interfere with the operation of the bus unless it was set to STBY while addressed to talk. Before it is set to STBY, make sure it is not addressed to talk, or else disconnect the HP-IB cable from the 3325A. The addressed to talk condition can be cleared by an IFC command, even when the 3325 A is in Standby.

## 3-118. Programming Data Transfer Mode.

3-119. Instructions for programming Data Transfer Mode are included in Paragraph 3-126.

## 3-120. Programming Entry Parameters.

3-121. The 3325 A entry parameters are:
Frequency
Amplitude
Offset
Phase
Sweep Start Frequency
Sweep Stop Frequency
Sweep Marker Frequency
Sweep Time
The programming syntax for these parameters is:
Mnemonic, Data, Delimiter, EOS
NOTE
All program codes are shown in ASCII characters.

Valid mnemonics:
$\mathrm{FR}=$ Frequency
$\mathrm{AM}=$ Amplitude
$\mathrm{OF}=$ Offset

ST = Sweep Start Frequency
SP = Swcep Stop Frequency
MF = Sweep Marker Frequency
TI = Sweep Time
Valid data:

0 thru $9=$ ASCII numerics (if too many digits are sent, the extra digits will be ignored or rounded)
$+=$ ASCII plus sign (plus sign is accepted but not required)
$-=$ ASCII minus sign (minus sign will be ignored if sent for parameters that cannot be negative)
. = ASCII decimal (floating decimal entries not valid)

Valid delimiters:

$$
\begin{aligned}
& \mathrm{HZ}=\text { Hertz } \\
& \mathrm{KH}=\text { Kilohertz } \\
& \mathrm{MH}=\text { Megahertz } \\
& \mathrm{VO}=\text { Volts (peak-to-peak or dc) } \\
& \mathrm{MV}=\text { Millivolts (peak-to-peak or dc) } \\
& \mathrm{VR}=\text { Volts rms } \\
& \mathrm{MR}=\text { Millivolts rms } \\
& \mathrm{DB}=\text { dBm } \\
& \mathrm{DE}=\text { Degrees } \\
& \mathrm{SE}=\text { Seconds }
\end{aligned}
$$

## NOTE

When operating in Data Mode 1, an EOS character is not required. When in Mode 2, the EOS character should not be sent until the end of the program string (or after 48 bytes; see Paragraph 3-1/7).

## 3-122. Programming Waveform Function.

3-123. The selectable functions are:
DC only
Sine wave
Square wave
Triangle wave
Positive Slope Ramp
Negative Slope Ramp
The programming syntax for selecting function is:
Mnemonic, Data, EOS
Valid mnemonic:
$F U=$ Function

```
\(\emptyset=\) Function off (dc only)
\(1=\) Sine
\(2=\) Square
\(3=\) Triangle
\(4=\) Positive Slope Ramp
5 = Negative Slope Ramp
```


### 3.124. Programming Binary (On or Off) Functions.

3-125. The programmable binary functions are:
High Voltage Output (Option 002)
Amplitude Modulation
Phase Modulation
The programming syntax for binary functions is:
Mnemonic, Data, EOS
Valid mnemonics:
HV = High Voltage Output (If the 3325A receives the HV mnemonic but does not have the high voltage option, $S R Q$ (if enabled) and an error code will be generated. See Paragraph 3-134.)
MA $=$ Modulation - Amplitude
MP = Modulation - Phase
Valid data:
$\emptyset=0 \mathrm{ff}$
$1=O n$

## NOTE

The rear panel signal output is inactive (no internal signal connection) if the instrument has the High Voltage Output Option 002 installed. Instructions are given in the Operating and Service Manual, Section VYII, Service Group M, for activating the rear panel signal output in one of two ways: 1) Placing the standard/high voltage output on the rear pantel only, disconnecting the front panel signal output, or 2) Disabling the high voltage output and enabling the standard front/rear output configuration.

3-126. Programming Selection Functions.

## NOTE

The selection functions are similar to binary functions, but instead of ON or OFF states, selection is made between two mutually exclusive operations.

3-127. The programmable selection functions are:

Rear Output/Front Output<br>Linear Sweep/Logarithmic Sweep<br>Data Transfer Mode

The programming syntax for the selection functions is:
Mnemonic, Data, EOS
Valid mnemonics:
RF = Rear or Front Output
SM $=$ Sweep Mode
MD = Data Transfer Mode
Valid data for RF is:
$1=$ Select Rear Output
$2=$ Select Front Output (If the 3325A receives the RF mnemonic but does not have rear output capability (Option 002, for example) SRQ (if enabled) and an error code will be generated. See Paragraph 3-134.)

Valid data for SM is:
$1=$ Linear Sweep (The 3325A turns on in Linear Sweep function. This function need not be programmed except to change from Linear to Log Sweep or to return to Linear.)
$2=$ Logarithmic Sweep
Valid data for MD is:
1 = Data Mode 1 (The 3325A turns on in Data Mode 1. This function need not be programmed if it is desired to remain in Data Mode 1.)
$2=$ Data Mode 2

## 3-128. Programming Execution Functions.

3-129. The programmable execution functions are:

```
Assign Zero Phase Reference
Perform Amplitude Calibration
Start Single Sweep
Start Continuous Sweep
Perform Self Test
```

The programming syntax for execution functions is:
Mnemonic, EOS
Valid mnemonics:
$\mathrm{AP}=$ Assign Zero Phase Reference
$\mathrm{AC}=$ Perform Amplitude Calibration
SS = Start Single Sweep

SC = Start Continuous Sweep
TE $=$ Perform Self Test

## NOTES

1. The Start Single mnemonic must be sent twice (SSSS). The first SS sets the output (and display) to the start frequency, and the second SS starts the sweep.
2. While the 3325 A is in Continuous Sweep mode, if it receives the mnemonics $S C, S S$, $F R, P H, A C, A P$, or $T E$, it will stop sweeping. It must receive $S C$ again in order to resume continuous sweeping; or if a single sweep is to be programmed, SSSS is required.
3. The "Busy" flag (bit 7 in the status byte, see Paragraph 3-138) will be " 1 " for the duration of a Self Test operation. After Self Test, the 3325A returns to the previously programmed conditions, except that if a sweep was in progress the sweep will remain stopped.

### 3.130. Programming Amplitude Units Conversion.

3-131. The programming syntax for converting amplitude units (Vp-p, Vrms, dBm) is:

Mncmonic, Delimiter, EOS
Mnemonic $=\mathrm{AM}=$ Amplitude
Delimiter $=$ The units to which you want to convert:

$$
\begin{aligned}
& V O=V p-p \\
& M V=m V p-p \\
& V R=V r m s \\
& M R=m V r m s \\
& D B=d B m
\end{aligned}
$$

Example: If amplitude was programmed in Vp-p, it may be converted to dBm by programming "AMDB". If amplitude was the last parameter programmed and is shown in the display, only the delimiter "DB' needs to be programmed.

### 3.132. Programming Storage Registers.

3-133. The data that will be stored includes the current program of Entry Parameters, Function (Waveform), Binary Functions, and Selection Functions. The storage register functions are:

Store Data in Register N Recall Data from Register $N$

The programming syntax for storage register functions is:

> Mnemonic, Data, EOS

Valid mnemonics:

$$
\$ \mathrm{R}=\text { Store }
$$

$\mathrm{RE}=$ Recall
Valid data:
0 thru $9=$ ASCII numerics specifying register number

## NOTES

1. If no data has been stored in a register, the recall command for that register will be ignored.
2. An amplitude calibration is performed when a register is recalled.
3. The numeric value for the phase is stored, but the phase of the output is not changed when the register is recalled. (Phase may need to be reprogrammed.)
4. DCL (Device Clear) and SDC (Selected Device Clear) commands do not affect the storage registers.

### 3.134. Service Requests.

3-135. The 3325A will set the SRQ line true for any of the following reasons, if enabled by the $\$ R Q$ mask (see Paragraph 3-144):

## Program String Error

Sweep Started or Sweep Stopped
System Failure (Possible component problem)
Failed Self Test
Failed Amplitude Calibration
External Reference Unlocked
Main Oscillator Unlocked

### 3.136. Serial Poll.

3-137. When the system controller determines that the SRQ line is true, it may conduct either a Serial Poll or a Parallel Poll to determine which device(s) initiated the Service Request, and the reason(s) for the request. The 3325A responds to a Serial Poll, which is conducted in the following manner:

Controller places ATN true (command mode)
Controller sends Serial Poll Enable (SPE) on lines
DIOI- 8 (ASCII CAN, binary code $\times 0011000$ )

Controller sends 3325A Talk address, controller Listen address
Controller places ATN false (data mode)
3325A responds by sending status byte on DIO1-8
Controller places ATN true (after each device has been polled)
Controller sends Serial Poll Disable (SPD) on DIO1-8 (ASCII EM, binary code $\times 0011001$ )

Serial Poll Disable clears the SRQ message originated by the 3325 A , resetting bits $\emptyset$ through 3 and bit 6 in the status byte.

## NOTE

Some of the above Serial Poll operations are performed automatically by some controllers in response to certain programming statements. Refer to the programming instructions for your particular controller.

## 3-138. Status Byte.

3-139. A status byte consists of one 8-bit byte on the HP IB data lines. A " 1 " in bit 6 indicates that the 3325A did request service (placed $\$ R Q$ true), and a " $D$ " in bit 6 indicates that it did not request service. The 3325A status byte contains the following information:

76543210 Status byte bits
(87654321 DIO lines)
FRFxSSSS F = Flag; R = Request Service:


Busy Flag. $1=3325$ A busy processing data. Does not cause SRQ.

## 3-140. Busy Flag.

3-141. The Busy Flag (status byte bit 7) is high (1) while the 3325 A is processing data. This bit can be monitored
by the controller to determine when the 3325 A is ready for more data.

## 3-142. Sweep Flag.

3-143. The Sweep Flag (bit 5 of the status byte) is high (1) while the 3325 A is in the process of sweeping. This bit can be monitored by the controller to determine when the end of a sweep occurs.

### 3.144. Masking or Enabling Service Requests.

3-145. Bits 3 through $\emptyset$ in the status byte can be masked so that the corresponding conditions will not cause a service request. However, a " 1 " will still appear in the status byte if the condition exists, and can be cleared only by a serial poll. At instrument turn-on all $\$ R Q$ conditions are masked. The programming syntax for masking and enabling $S R Q$ conditions is:

Mnemonic, Data, EOS
Mnemonic $=$ MS
Valid Data is shown in Table 3-11.

## 3-146. Interrogating Program Errors.

3-147. The "Program Error" service request may result from the following Errors:

ASCII	
Numeric	Error
1	Entry parameter out of bounds (for exam-   ple, Freq $\geq 61 \mathrm{MHz})$
2	Invalid delimiter
3	Frequency too large for function (for ex-   ample, Function $=$ Triangle, Freq   $\geq 11 \mathrm{kHz})$
4	Sweep time too small or too large
5	Offset incompatible with amplitude, or   amplitude incompatible with offset
Sweep frequency too large for function;   Sweep bandwidth too small; Start fre-   quency too small (log sweep); Start fre-   quency greater than stop frequency (log   sweep)	
7	Unrecognizable mnemonic received
8	Unrecognizable data character received
Option does not exist (High Voltage or	
Rear/Front)	

Table 3-11. SRO Mask/Enable Data.

ASCl Character	$\begin{aligned} & \text { Bits } \\ & 3 \text { thru } 0 \end{aligned}$	System Fail Bit 3	Sweep Start Bit 2	Sweep \$top Bit 1	Program Error Bit 0
@	*0000	Mask	Mask	Mask	Mask
A	0001	Mask	Mask	Mask	Enable
$B$	0010	Mask	Mask	Enable	Mask
C	0011	Mask	Mask	Enable	Enable
D	0100	Mask	Enable	Mask	Mask
E	0101	Mask	Enable	Mask	Enable
F	0110	Mask	Enable	Enable	Mask
G	0111	Mask	Enable	Enable	Enable
H	1000	Enable	Mask	Mask	Mask
1	1001	Enable	Mask	Mask	Enable
J	1010	Enable	Mask	Enable	Mask
K	1011	Enable	Mask	Enable	Enable
L	1100	Enable	Enable	Mask	Mask
M	1101	Enable	Enable	Mask	Enable
N	1110	Enable	Enabla	Enable	Mask
0	1111	Enable	Enable	Enable	Enable

* Initial turn-on conditions

The programming syntax for interrogating error is:
Mnemonic, EOS
Mnemonic $=$ IER
After receiving IER, the 3325A will send back the following the next time it is addressed to talk:

Mnemonic, Data, CR (ASCII carriage return), LF \& EOI (ASCII line feed with EOI sent simultaneously)

Mnemonic $=E R$
Data $=$ The ASCII numeric corresponding to the first crror that occurred (see list above).

If no error occurred, the code returned is 0 . When more than one error has occurred, only the code for the first error will be returned. After interrogation, the error code is set to zero until the next error occurs.

### 3.148. Interrogating Entry Parameters.

3-149. Each entry parameter car. be interrogated by the controller to determine its value. The programming syntax for interrogating entry parameters is:

## 1, Mnemonic, EOI

I = the ASCII character I and indicates interrogation desired.

Valid mnemonics (parameter to be interrogated):
FR $=$ Frequency
$\mathrm{AM}=$ Amplitude
$\mathrm{OF}=$ Offset

$$
\begin{aligned}
& \text { PH = Phase } \\
& \text { ST }=\text { Sweep Start Frequency } \\
& \text { SP }=\text { Sweep Stop Frequency } \\
& \text { MF }=\text { Sweep Marker Frequency } \\
& \text { TI }=\text { Sweep Time }
\end{aligned}
$$

After receiving a parameter interrogation, the 3325A will send back the following the next time it is addressed to talk:

Mnemonic, Data, Delimiter, CR (ASCII Carriage
Return), LF \& EOI (ASCII Line Feed with EOI
sent simultaneously)
Mnemonic $=$ The mnemonic of the parameter being interrogated

Data $=11$ digits of ASCII numerics equal to the value of the specified parameter plus decimal point. If the value is negative, the first digit is a minus sign.

Delimiter $=$ The data suffix mnemonic denoting the parameter value (see Paragraph 3-120)

## NOTE

Only one parameter can be interrogated by each interrogation message.

### 3.150. Interrogating Function (Waveform).

3-151. The 3325A may be interrogated by the controller to determine the current function programmed. The programming syntax for interrogating function is:

## I, Mnemonic, EOS

$\mathrm{I}=$ The ASCII character I and indicates interrogation desired

Mnemonic $=F U=$ Function
After receiving IFU, the 3325A will send back the following the next time it is addressed to talk:

Mnemonic, Data, CR (ASCII Carriage Return), LF \& EOI (ASCII Line Feed with EOI sent simultaneously)

Mnemonic $=\mathrm{FU}$
Data $=$ One ASCII numeric indicating function as follows:

$$
\begin{aligned}
& \emptyset=\text { DC Only (Offset) } \\
& 1=\text { Sine } \\
& 2=\text { Square } \\
& 3=\text { Triangle } \\
& 4=\text { Positive Slope Ramp } \\
& 5=\text { Negative Slope Ramp }
\end{aligned}
$$

## 3-152. Interrogating Miscellaneous Parameters.

3-153. The other parameters shown below can be interrogated by the controller to determine their present state. The programming syntax is:

## I, Mnemonic, EOS

I $=$ The ASCII character I and indicates interrogation desired

Valid Mnemonics (parameter to be interrogated):
$\mathrm{SM}=$ Sweep Mode
RF $=$ Rear or Front Output*
HV = High Voltage Output*
$\mathrm{MA}=$ Amplitude Modulation
$M P=$ Phase Modulation
*Rear/Front output and High Voltage Output (Option 002 ) are mutually exclusive. If either RF or HV is interrogated, the mnemonic and data returned will indicate the actual capability of the instrument and its state. For example, if the High Voltage option is present and OFF, HVØ will be returned in response to either IRF or IHV.

After receiving an interrogation, the 3325A will send back the following the next time it is addressed to talk:

> Mnemonic, Data, CR (ASCII Carriage Return), LF \& EOI (ASCII Line Feed with EOI sent simultaneously)

Mnemonic $=$ The mnemonic of the parameter being interrogated

Data $=1$ ASCII digit specifying the state of the parameter. This is the same digit that would be used to program the parameter to that state.

## 3-154. Using the Interrogate Capability.

3-155. When the 3325A is changed from local to remote operation or vice versa, it retains its currently programmed state until this program is changed by the operator or controller. This feature can be useful in setting up a program string for HP-IB programming. For example, using the 3325 A in local, the operator can determine experimentally the parameters required to perform the operation or test desired. Then the 3325A can be placed in remote and its function and entry parameters interrogated. Each item can be stored by the controller and then combined to form the 3325A program string to be incorporated into the total HP-IB program.

### 3.156. 3325A Programming Procedure.

3-157. The following examples are given to illustrate the basic procedure for developing a program. Programn examples are shown in Appendix B-3, using the -hpModel 9825A Calculator as the system controller. Appendix A-3 diagrams the required messages.

Example 1:
Address controller to talk, 3325A to listen

Send Program Data


## Example 2:

Address controller to talk, 3325A to listen

Send Program Data
Check for Require Service message

If yes, determine reason from 3325A Status Byte

Take corrective action if necessary


## APPENDIX A <br> SECTION III <br> META MESSAGES <br> BLOCK DIAGRAMMED

DATA MESSAGE - The Data message is the actual information that is sent from a talker to one or more listeners. This action requires the controller to first enter the command mode to set up the talker and listener(s) for the transfer of data. The information is then transferred in the data mode.


TRIGGER - The Trigger message causes all addressed instruments with this capability to execute some predefined function simultaneously.

The 3325A does not have Trigger capability.


REN MUST BE TRUE bEFORE EXE-
CUHING THE TRIGGER MESSAGE,

CLEAR - The Clear message may be implemented for addressed devices or for all devices on the bus capable of responding. In both cases the controller places the bus in the command mode to execute the message.



REMOTE - Only the system controller can place the device into the Remote operating condition. To implement the Remote message, the controller must set the REN line true. The HP-IB is then in the Remote Enable mode. The controller then sends the listen addresses of those devices that are to be placed in the Remote operating condition. Some instruments have been designed to enter the Remote mode as soon as REN is true.


LOCAL - The Local message will remove addressed devices from the Remote operating mode to local (front panel) control. The controller must place the HP-IB into the command mode and address to listen all devices that are to be returned to local. The Local message does not remove the HP-IB from the Remote mode, only the listening devices.


LOCAL LOCKOUT - The Local Lockout message prevents the operator from placing the instrument into local control from the front panel. The controller must be in the command mode to send the Local Lockout message.


REN MUST GE TRUE BEFORE EXE-
CUTING THE LOCAL LOCKOUT MES-
SAGE.

CLEAR LOCKOUT AND SET LOCAL - This message removes all devices from the Local Lockout mode and causes them to revert to local control. Because the REN line is set false, the HP-IB is in the local mode.


REQUIRE SERVICE - The Require Service message is implemented by a device setting the SRQ line true. The Require Service message and, therefore, the SRQ line is held true until a poll is conducted by the controller to determine the cause of the request for service, or until the device no longer needs service.

*REFER TO THE sTATUS BYTE MES5AGE FOR THE SPECIFICATIONS REOURED TO FORCE SRO FALSE.

STATUS BYTE - The Status Byte message represents the operational status of a single instrument during a Serial Poll. A controller usually Serial Polls devices in response to a Require Service message. The controller requests device status from one device at a time. The status information byte ( 8 bits) sent by the device will tell whether that device needed service and why. A device will stop requesting service upon being Serial Polled, or if it no longer needs service. The controller initiates the message by placing the bus into the command mode, sending the Serial Poll Enable command, and addressing the specific devices to be polled, one at a time. The device then sends its Status Byte and clears the SRQ line provided the cause for the require Service message is no longer present. The controller then places the bus in the command mode to terminate the message with a Serial Poll Disable command.


STATUS BIT - The Status Bit message is sent by a device to the controller to indicate its operational status in response to a Parallel Poll. Parallel Polling consists of the controller requesting one bit of status from each device simultaneously. The Parallel Poll may consist of three types of operations: Configuring, Polling, and Unconfiguring. In Configuring, the controller assigns each device a logic level and bit (on the bus data lines) for a poll response. During polling, each device responds on its assigned data line with the appropriate logic level. In Unconfiguring, the controller negates the bit and level assignments for all or selected devices. Several devices may be assigned to the same bit and level, causing their response bits to be logically ORed or ANDed.


OR


PPE ASSIGNS THE LOGIC LEVEL ANO DATA LINE OF A DEVICE(S) RESPONSE, 140 g THRU 147 g A\$\$IけN THE LOW (TRUE) LEVEL AND $150_{\mathrm{B}}$ THRU $1 \$ 07_{9}$ ASSIGNS THE HIGH (FALSE) LEVEL $140_{\mathrm{g}}$ AND $1 \mathrm{TO}_{8}^{8}$ ASSIGNS BIT $Z^{\prime \prime}$ (DATA LINE 11, $141_{8}$ AND $1 \$ 78$ WHICH ASSIGN BIT $7^{7}$ AND IS THE LAST POSSIBLE ASS゙SNMENT.

The 3325A does not respond to Parallel Poll.

PASS CONTROL - The Pass Control message transfers bus management responsibilities from the active controller to another controller. In order to pass control, the active controller must enter the command mode, send the talk address, and the HP-IB characters for talk control.


- the receivint controllen takes CONTROL AT THIS TIME.

The 3325A does not respond to the Pass Control message.

ABORT - The system Controller implements the Abort Message to regain control of the HP-IB from the active controller.


# APPENDIX B <br> SECTION III <br> PROGRAMMING THE MODEL 3325A <br> with the <br> MODEL 9825A CALCULATOR 

The following basic examples are provided to assis the operator in developing programs for the Model 3325A in an HP-IB system which uses the -hp- Model 9825A Calculator as the system controller. The calculator must be equipped with a General I/O ROM and an HP-IB Interface set to select code 7. The calculator (controller) normally holds the REN line true, unlcss the "lcl 7 " (local) command is sent. REN may be returned to the true state by the "rem 7" (remote) command.

Example 1: This is a basic program statement which accomplishes the following:
Address the controller to talk
Address the 3325A to listen
Sent Program Data:
Function: Sine
Frequency: 5 kHz
Amplitude: $3 \mathrm{Vp}-\mathrm{p}$
Offset: +1.5 V


The last parameter programmed can be changed without sending the parameter mnemonic. For example, following the program string above, the offset (OF) may be changed to 1 V by sending "IVO".

Example: 2: This program sets up sweep parameters and initiates a single sweep.
Address the controller to talk
Address the 3325A to listen
Send Program Data:
Function: Sine
Amplitude: 3 Vrms
Start Frequency: 1 kHz
Stop Frequency: 10 kHz
Marker Frequency: 5 kHz
Sweep Time: 2 seconds
Start Single Sweep

## NOTE

To start a single sweep the mnemonic "SS" must be sent twice. The first "SS" sets the 3325A to the Start frequency, and the second " SS " starts the sweep.


Example 3：This example checks the＂Require Service＂status of the 3325A and if it did re－ quest service，determines the reason．

## （1）





＂ardsipiftis－（4）
：if thitic． $1=1$
！btt＂Renuest


HTH Fragemm：
$\pm 4$

4trocrotrom
Error＂：urt 7174（7）

Ey if＂＇＝1月art
＂Fat＂Merer bit
at Eutnos．＂
＇Tif Ewaty
＂thomid medami
ter ${ }^{-1}$

＂＂＇mon tom larez for Fumetagn＂

＂Sucem Time
Imodide＂
 ＂ilifset \＆Hated Jwmentible＂
11＂it fiemerit．
 revromr＂

 Mromamic．
 ＂Unがあomaizutat ©ota Shar＂
 ＂0ptim＂Ores
Hot Exi＝t＂

1．Enables all service request conditions．
2．Program data contains an error．Stop frequency （ SP 15 KH ）is too large for triangle function（FU3）．

3．Wait statement allows time for sweep to start before reading status．

4．Read status byte from the 3325 A and place in the calculator variable＂ S ＂．
5 If bit 6 of the status byte $=1$ ，the 3325 A did request service．Go to subroutine to determine the reason．

6．Programming continues at this point if the 3325 A did not request service or upon returning from the subroutine．

7．If service request resulted from a program string error，interrogate the 3325A to determine the error code and place in the calculator variable＂$E$＂．

8．Determine the nature of the program error．


9．Determine other reason for service request and if ＂Sweeping＂or＂Busy＂flags were true．

10．Return from subroutine．
11．Printer records the results of the serial poll．
12．If the program string were corrected to make all data valid，this printout would result from the above program．

Gobew motqeat





```
Erロロ
```



```
シャロト
```


 irn＇

己电：＂：＂








```
 # ="!G
```



```
 !"##% F\Fsi!
```




```
(1)
```

Lines 2-7 Other parameters are interrogated. Amplitude data acquired by this program does not indicate the units programmed. Frequency is always returned in Hz and DC Offset in Volts.


If the calculator is equipped with a String Variable ROM, the interrogate program may be changed to the following. Because string variables accept both alpha and numeric characters, the resulting printout includes the mnemonics and delimiters (units).



```
 0&50]
```




```
 #%t.|必
2: wrt %avy"MFE"
```



```
 !゙!F
```





```
4* wrt 717:"40w"
```





1. Dimension a string variable for each parameter you want to interrogate. The dimension number (in brackets) is the number of spaces assigned to the variable.
2. This printout results when string variables are used.

Example 5：The 3325A can be made to sweep amplitude（in steps）if a for／next statement is used in the calculator program．It is recommended that the upper and lower amplitude limits selected be on the same range because irregularities in the sweep will occur if the attenuator relays are switched．

Line $\emptyset$ DC Offset（OFØVO）is programmed to zero because any offset would be incompatible with the 10



 717！＂・ロロ＂
2 Brax x

3 by－． 1 \％wit


$5 \%$ シャ！

V maximum amplitude of this sweep．

Line 1 The sweep limits（ 3 to 10）are on the same range．The sweep increment is in .1 V steps．Because amplitude was the last parameter programmed，the write statement does not require the＂AM＂ mnemonic．

Line 2 The calculator returns to Line 1 until $\mathrm{I}=10$ ，then proceeds to Line 3.

Line 3 The sweep decrement is also in ． V steps．
Line 5 Return to Line 1 to continue sweeping．

The sweep speed is determined by calculator and 3325A data transfer and processing times．If a slower sweep time is desired，wait statements may be added before the＂next I＂statements．

MODEL 3325A
SYNTHESIZER/FUNCTION GENERATOR
HP-IB PROGRAMMING CODE
(ASCII Characters)

FUnction	
DC only	$\emptyset$
Sine	1
Square	2
Triangle	3
Positive Ramp	4
Negative Ramp	5


FRequency	
Hz	HZ
kHz	KH
MHz	MH


AMplitude	
Volts $p-p$	VO
mVp-p	MV

mVp-p MV
Vrms VR
mVrms MR
$\mathrm{dBm} \quad \mathrm{DB}$
DC OFfset
Volts $\quad$ Vo
$\mathrm{mV} \quad \mathrm{MV}$
PHase
Degrees DE
Sweep STart Frequency
Sweep StoP Frequency
Sweep Marker Frequency
Sweep TIme
Seconds SE
Sweep Mode

Lingar	1
Logarithmic	2

StoRe Program
$0-9$
REcall Program
$9-9$
Rear or Front Panel Output
Front
I
Rear
2
Execution Functions
Assign Zero Phase
Perform Amptd Cal
"Start Single*
Start Continuous
$\overline{\text { Perform Scll TEst }}$

High Voltage Output	
$\underset{\text { On }}{\text { Off }}$	

Amplitude Modulation - MA Off $\quad \emptyset$

Phase Modulation - MP
On
Off $\emptyset$
Data
$0 \quad 0$
1 1
2 2
3 3
4 4
$5 \quad 5$
$6 \quad 6$
$7 \quad 7$
$8 \quad 8$
$9 \quad 9$

-     - 

(Decimal) .
Interrogate Operations
Function
IFU

Frequency	IFR
Amplitude	IAM

Offect IOF:
Phase IPH
Swp Start Freq IST
Swp Stop Freq ISP
Swp Mkr lireq IMF
Sweep Time ITI
Swecp Mode ISM

Rear/Front Out IRI
High Volt Out IHV
Error IER

Program Mode IMD
Amptd Mode IMA
Phase Mode IMP
Error Codes (See Paragraph 3-146)

1. Entry parameter out of bounds
2. Invalid detimiter
3. Prequency too large for function
4. Sweep time too small or too large
5. Offect and amplitude incompatible
6. Sweep frequency or bandwidth error
7. Unrecognizable mnemonis
8. Unrecognizable data character
9. Option does not exist

[^2] the second " SS ', starts the sweep.
HP-IB |MPLEMENTATION WORKSHEET

DEVICE IDENTIFICATION													
LTSTEN													
ADDRESS TALK													
DECIMAL													
MESSAGE					$\mathrm{DE}$	VVICE I	1 MPLEME	ENTATIO					
DATA													
TR I GGER													
CLEAR													
LOCAL													
REMOTE													
LOCAL LOCKOLT													
CLEAR LOCKOUT   AND SET LOCAL													
REQUIRE SERVICE													
STATUS BYTE													
STATUS BIT													
PASS CONTROL													
ABORT													

$N=$ NOT IMPLEMENTED

## SECTION IV PERFORMANCE TESTS

### 4.1. INTRODUCTION.

4-2. This section contains tests which are in-cabinet procedures to determine whether the instrument is operating properly. In the Operating and Service Manual two sets of procedures are provided:
a. Operational Verification procedures which are recommended for incoming inspection and general after-repair tests.
b. Performance Tests which compare the instrument operation to the specifications listed in Table 1-1.
The Operating Supplement contains only the Operational Verification Procedures.

### 4.3. CALCULATOR-CONTROLLED TEST.

4-4. The only calculator-controlled test in these procedures tests the HP-IB interface circuits for proper operation. All input and output lines are tested. The program used for this test is written specifically for the -hp- Model 9825A Calculator but may be adapted to other controllers. The calculator prints the test results. This test is recommended for both the Operational Verification Checks and the Performance Tests.

### 4.5. OPERATIONAL VERIFICATION.

4-6. The following procedures are recommended for incoming inspection and for testing the instrument after repair. Additional tests to be performed following repair of certain circuits are indicated in Section VILI, An Operational Verification Record is located at the end of this section. For ease of recording the test data at various times, copies of the blank Operational Verification Record may be made without written permission from Hewlett-Packard.

4-7. Operational Verification includes the following procedures:

## Par. No.

Test

## 4-10 Self Test

4-12 Sine Wave Verification
4.14 Square Wave Verification

4-16 Triangle and Ramp Verification
4-18 Amplitude Flatness Check
4-20 Sync Output Check
4-22 Frequency Accuracy
4-24 Output Level and Attenuator Check
4-26 Harmonic Distortion Test
4-28 Close-in Spurious Signal Test
4.30 HP-IB Interface Test

## 4-8. Required Test Equipment.

4-9. A list of test equipment required for the Operational Verification procedures is given in Table 4-1. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model.

## 4-10. Self Test.

4-11. This test uses the control, ROM, and control clock circuits to verify operation of these and other circuits. The following front pancl indications result from this test.

LED check: Turns on all LED's for about two seconds

The following messages are displayed for about one second:

OSC FAIL - displayed only if the VCO is not controlled (displayed continuously after test)
PASS or FAIL 1 - tests AMPTD CAL of sine wave
PASS or FAIL 2 - tests AMPTD CAL of square wave
PASS or FAIL 3-tests AMPTD CAL of triangle
Press the blue entry prefix key, then press SELF TEST (AMPTD CAL) key. All LED's should light, and the display should not indicate any failures.

## 4-12. Sine Wave Verification.

4-13. This procedure visually checks the sine wave output for the correct frequency and any visible irregularities.

Equipment Required: Oscilloscope (-hp- Model 1740A)
a. Connect the 3325 A signal output to the oscilloscope vertical input. If the oscilloscope is an -hpModel 1740 A , set the input switch to the 50 -ohm position. If your oscilloscope does not have a 50 -ohm input, use a $50-\mathrm{ohm}$ load (-hp- Model 11048C 50-ohm Feedthru Termination) at the input.
b. Set the 3325 A as follows:

[^3]Table 4-1. Test Equipment Required for Operational Verification.

Instrument	Critical Specifications	Recommended Model
Oscilloscope	Vertical:   Bandwidth: de to 100 MHz   Deflection: 1 V to $5 \mathrm{~V} / \mathrm{div}$   Horizontal:   Sweep: . $05 \mu \mathrm{~s}$ to 1 s/div External Sweep Input	-hp-1740A
Electronic Counter	Frequency measurement to 20 MHz Accuracy: $\pm 2$ counts   Resolution: 8 digits	$\begin{aligned} & \text { hp- 5328A } \\ & \text { with Opt. } 040 \text { or } 041 \end{aligned}$
DC Digital Voltmeter	Ranges: 0.1 V to 100 V   Resolution: 6 digits   Accuracy: $\pm 0.1 \%$	nhp- 3455A
50.ohm load	Accuracy: $\pm$. $2.2 \%$ Power Rating: 1 W	-hp-11048C
High Frequency Spectrum Analyzer	Frequency Range: 1 MHz to 80 MHz Amplitude Accuracy: $\pm 0.5 \mathrm{~dB}$ Noise: $>70$ dB below reference	-hp-1417/8552B/8553E/ 8566A/8568A
Low frequency \$pectrum Analyzer	Frequency Range: 100 Hz to 50 kHz   Amplitude Range: 2 mV to 20 V   Noise: 380 dB below input reference or -140 dBv	-hp-3580A/3585A
Resistor	56.201/8W 1.0\%	-hp-0757-0395
Adapter	BNC female-to-dual banana plug	-hp-1250-2277
Calculator	HP-IB Control Capability	-hp- 9825A with 98034A Interface. General I/O ROM, Extended I/O ROM
Resistor	470n 2W 5\%	-hp-0698-3634

c. Set the oscilloscope vertical control to $2 \mathrm{~V} / \mathrm{div}$, horizontal to $.05 \mu \mathrm{~s} / \mathrm{div}$.
d. The oscilloscope should display one cycle per division, approximately five divisions peak-to-peak.
e. Change 3325 A frequency to 1 MHz .
f. Change oscilloscope horizontal control to . 1 $\mu \mathrm{S} / \mathrm{div}$.
g. The oscilloscope should display one sine wave having no visible irregularities.

## High Voltage Output (Option 002)

h. Set the oscilloscope vertical control to $5 \mathrm{~V} /$ div.
i. Set the oscilloscope input switch to $1 \mathrm{M} \Omega \mathrm{dc}$ coupled position (or disconnect external 50-ohm load).
j. Press 3325A High Voltage Output key (lower right corner of front panel).
k. Change 3325A amplitude to 40 V p-p. The oscilloscope should display one sine wave approximately eight divisions peak-to-peak having no visible irregularities.

1. Press the High Voltage Output key again to turn the option off.

### 4.14. Square Wave Verification.

4-15. This procedure checks the square wave output for frequency, rise time, and abberrations.

Equipment Required: Oscilloscope (-hp- Model 1740A)
a. Connect the 3325 A signal output to the oscilloscope vertical input. If the oscilloscope is an -hpModel 1740 A , set the input switch to the 50 -ohm position. If your oscilloscope does not have a 50 -ohm input, use a 50 -ohm load (-hp- Model 11048C 50-ohm Feedthru Termination) at the input.
b. Set the 3325 A as follows:

c. Set the oscilloscope vertical control to $2 \mathrm{~V} / \mathrm{div}$, horizontal to $.2 \mu \mathrm{~s} / \mathrm{div}$. The oscilloscope should display two square waves, approximately five divisions peak-topeak.
d. Switch the oscilloscope vertical control to $1 \mathrm{~V} /$ div, so that the abberrations (overshoot and ringing) can be measured. Aberration excursion should be less than 500 mV ( $1 / 2$ div. ).
e. Repeat Step d at 2 kHz and $.1 \mathrm{~ms} / \mathrm{div}$.
f. Adjust the oscilloscope vertical and horizontal controls so that the square wave rise time between the $10 \%$ and $90 \%$ points can be measured. Rise time should be less than 20 nanoseconds.

## 4-16. Triangle and Ramp Verification.

4-17. This procedure checks the triangle and ramp output signals for frequency, shape, and ramp retrace time.

Equipment Required: Oscilloscope (-hp- Model 1740A)
a. Connect the 3325 A signal output to the oscilloscope vertical input. If the oscilloscope is an -hp- Model 1740A, set the input switch to the 50 -ohm position. If your oscilloscope does not have a 50 -ohm input, use a 50 -ohm load (-hp- Model 11048C 50-ohm Feedthru Termination) at the input.
b. Set the 3325A as follows:
High Voltage Output (Option 002) ..... Off
Function . . . . . . . . . . . . . . . . . . Triangle
Frequency . . . . . . . . . . . . . . . . . . . . . $10 \mathrm{kHz} \mathrm{v}-\mathrm{p}$
c. Set the oscilloscope vertical control to $2 \mathrm{~V} / \mathrm{div}$, horizontal to $.1 \mathrm{~ms} / \mathrm{div}$. The oscilloscope should display one triangle wave per division, approximately five divisions peak-to-peak.
d. Change the 3325A function to positive slope ramp. The display should be one ramp per division, approximately five divisions peak-to-peak.
e. Change 3325 A function to negative slope ramp. The display should be one ramp per division, approximately five divisions peak-to-peak.
f. Change the oscilloscope horizontal and vertical controls so that the ramp retrace time from the $90 \%$ to $10 \%$ points can be measured. Retrace time should be less than $3 \mu$ s.
g. Change 3325A function to positive slope ramp and repeat Step $f$.
h. Change 3325A function to triangle.
i. Set oscilloscope vertical control to $2 \mathrm{~V} / \mathrm{div}$, horizontal to $10 \mu \mathrm{~s} / \mathrm{div}$. The oscilloscope should display one triangle wave with no visible irregulatities in either slope.

### 4.18. Amplitude Flatness Check.

4-19. This procedure provides a visual check of the sine wave amplitude flatness.

Equipment Required: Oscilloscope (-hp- Model 1740A)
a. Connect the 3325A signal output to the oscilloscope vertical input. If the oscilloscope is an -hpModel 1740 A , set the input switch to the 50 -ohm position. If your oscilloscope does not have a 50 -ohm input, use a 50 -ohm load (-hp- Model 11048C 50 -ohm Feedthru Termination) at the input.
b. Set the 3325 A as follows:

High Voltage Output (Option 002)	Off
Function	Sine
Frequency	2 kHz
Amplitude	0 V p-p
Sweep Start Freq	0 Hz
Sweep Stop Freq	0 MHz
Sweep Marker Freq	5 MHz
Sweep Time	01 sec

c. Connect the 3325A X-Drive output to the oscilloscope's channel B input. Connect the 3325A signal output to the oscilloscope's channel A input.

* d. Set the oscilloscope as follows:

$$
\begin{aligned}
& \text { Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A vs B } \\
& \text { Channel A Sensitivity ............................. } \mathrm{V} / \mathrm{div} \\
& \text { (uncal - adjust for full vertical deflection) } \\
& \text { Channel B Sensitivity . . ........................5V/div } \\
& \text { (uncal - adjust for full horizontal sweep) }
\end{aligned}
$$

* Settings may vary from one oscilloscope to another. Note that whichever scope is used, it should be operated in a "X-Y" mode, with the 3325A X-Drive output driv. ing the horizontal (X) sweep and the signal output driving the scope's vertical (Y) channel.


## e. Press the 3325A START CONT key.

f. The oscilloscope display should show a sweep that is essentially flat, dropping no more than $3.5 \%$. Any D.C. variations should be ignored, taking the peak-to-peak reading for flatness comparison.

## 4-20. Sync Output Check.

4-21. This test verifies the sync output signal levels.
Equipment Required: Oscilloscope (-hp- Model 1740A)
a. Connect the 3325 A sync output to the oscilloscope vertical input. If the oscilloscope is an -hp- Model 1740 A , set the input switch to the 50 -ohm position. If your oscilloscope does not have a 50 -ohm input, use a 50 -ohm load (-hp- Model 11048 C 50 -ohm Feedthru Termination) at the input.
b. Set the 3325A function to sine, frequency to 20 MHz .
c. Adjust the oscilloscope controls to measure the high and low voltage levels of the sine square wave. The high level should be greater than +1.2 V and the low level should be less than +0.2 V .

## 4-22. Frequency Accuracy.

4-23. This test compares the accuracy of the 3325A output signal to the specification in Table 1-1: $\pm 5 \times 10^{-6}$ of selected frequency.

Equipment Required: Electronic Counter (-hp- Model 5328A, calibrated within three months or with an accurate 10 MHz external reference input)
a. Connect the 3325A signal output to the electronic counter channel A input with a $50 \Omega$ load. Allow 3325A and counter to warm up for 20 minutes.
b. Set the 3325A output as follows:

Function	Sine
Frequency	. 20 MHz
Amplitude	.0.99 V P-P
DC Offset	0 V

c. Set the counter to count the frequency of the A input with 0.1 Hz resolution, and adjust for stable triggering. Electronic counter should indicate 20000000.0 Hz $\pm 100 \mathrm{~Hz}$.
d. Change 3325A function to square wave. Frequency automatically changes to 10 MHz . Electronic counter should indicate $10000000.0 \mathrm{~Hz} \pm 50 \mathrm{~Hz}$.
e. Change 3325A function to triangle. Frequency automatically changes to $10 \mathrm{kH} \%$. Move the counter input to
the sync output of the 3325A. Set the counter to average 1000 periods. Electronic counter should indicate 100 $000.00 \mathrm{~ns} \pm 0.5 \mathrm{~ns}$.
f. Change 3325 A function to positive slope ramp. Electronic counter should indicate $100,000 \mathrm{~ns} \pm .5 \mathrm{~ns}$.

### 4.24. Output Level and Attenuator Check.

4-25. This procedure checks the output level and the attenuator by using the "dc only" function.
Equipment Required:
DC Digital Voltmeter (-hp- Model 3455A)
50 -ohm Feedthru Termination (-hp- Model 11048C)
a. Connect the 3325A signal output through a 50 -ohm feedthru termination to a dc digital voltmeter input.
b. If the instrument has High Voltage Output Option 002 , make sure the High Voltage Output is Off (High Voltage indicator light in the center of the "SIGNAL" key in the lower right corner of the front panel if Off).
c. Press whichever function key is presently active, indicated by a lighted indicator in the center of the key. This removes the ac output. The indicator in the center of the DC OFFSET key should tight.
d. Set the 3325A dc offset to -5 V , then press the AMPTD CAL key.
e. The dc digital voltmeter reading should be -4.980 V to -5.020 V .
f. Change 3325A dc offset to (+)5 V. Digital voltmeter reading should be +4.980 V to +5.020 V .
g. Change 3325A dc offset to the following voltages. The voltmeter readings should be within the tolerances shown.

\[

\]

## High Voltage Output Option 002 DC Offset

h. Remove the 50 -ohm feedthru termination and connect the 3325A output directly to the digital voltmeter input.
i. Press the "SIGNAL" key in the lower right corner of the 3325A front panel to select High Voltage Output (Option 002). Lighted indicator in the center of this key indicates High Voltage Output is on.
j. Set 3325A dc offset to 20 V . Digital voltmeter reading should be +19.775 V to +20.225 V .
k. Set 3325 A dc offset to -20 V . Digital voltmeter reading should be -19.775 V to -20.225 V .

### 4.26. Harmonic Distortion Test.

4-27. This procedure tests the harmonic distortion of the 3325 A sine wave output against the following specifications from Table 1-1.

Harmonic Distortion (relative to fundamental)

## Fundamental Frequency

> No Harmonic
> Greater Than

0.1 Hz to 50 kHz	-65 dB
50 kHz to 200 kHz	-60 dB
200 kHz to 2 MHz	-40 dB
2 MHz to 15 MHz	-30 dB
15 MHz to 20 MHz	-25 dB

Equipment Required:
High Frequency Spectrum Analyzer (-hp- Model 141T/ 8552B/8553B/8566A/8568A)
Low Frequency Spectrum Analyzer (-hp- Model 3580A/ 3585A)
50-ohm Feedthru Termination (-hp- Model 11048C)
Resistor 470』 2W 5\% (-hp-0698-3634)
Resistor $56.2 \Omega 1 / 8 \mathrm{~W} 1 \%$ (-hp-0757-0395)
a. Set the 3325 A output as follows:

b. Connect the 3325 A signal output to the high frequency spectrum analyzer's 50 ohm input.
c. Set the spectrum analyzer controls to display the fundamental and at least four harmonics. Verify that all harmonics are 25 dB below the fundamental.
d. Set the 3325A to the following frequencies and verify that all harmonics are below the specified levels, relative to the fundamental.

15 MHz	-30 dB
2 MHz	-40 dB
200 kHz	-60 dB

e. Disconnect the 3325A from the high frequency spectrum analyzer and connect it to the low frequency spectrum analyzer's 50 ohm input.
f. Set the 3325 A frequency to 50 kHz and the amplitude to 9.99 mVp -p.
g. Set the spectrum analyzer controls to display the fundamental and at least three harmonics. (It may be necessary to decrease the analyzer's video bandwidth to separate the harmonics from the noise floor.) Verify that all harmonics are at least 65 dB below the fundamental.

Figure 4-1. Harmonic Distortion Verification
(High Voltage Output).
h. Set the 3325A to the following frequencies and verify that all harmonics are 65 dB below the fundamental.

$$
10 \mathrm{kHz}
$$

1 kHz
100 Hz

## High Voltage Output (Option 2)

i. Connect the 3325 A signal output to the low frequency spectrum analyzer's $50 \Omega$ input. (See Figure 4-1.)
j. Press the "high voltage output"' key on the 3325A. Set the amplitude to $40 \mathrm{Vp}-\mathrm{p}$ and the frequency to 100 Hz .
$k$. Set the spectrum analyzer controls to display the fundamental and at least three harmonics. Verify that all harmonics are 65 dB below the fundamental.
l. Set the 3325A to the following frequencies and verify that their harmonics are below the specified levels, relative to the fundamental.

10 kHz	-65 dB
200 kHz	-60 dB
1 MHz	-40 dB

m. Press the high voltage output key to deactivate the high voltage output.

## 4-28. Close-In Spurious Signal Test.

4-29. This procedure tests the sine wave output for spurious signals which may be generated by the 3325A frequency synthesis circuits. The spurious signals must be more than 70 dB lower than the fundamental signal.

Equipment Required: Spectrum Analyzer (-hp-3585A/ 8566A/8568A)
a. Set the 3325A as follows:

High Voltage Output (Option 002) . . . . . Off
Function

$$
\begin{aligned}
& \text { Frequency . . . . . . . . . . . . . . . . . . . . . . . . . } 20.901 \mathrm{MHz} \\
& \text { Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . }
\end{aligned}
$$

b. Connect the 3325A signal output to the spectrum analyzer's 50 ohm input.
c. Set the spectrum analyzer controls for a center frequency of 20.001 MHz , a resolution bandwidth of 30 Hz , a $100 \mathrm{~Hz} /$ div frequency span, with the fundamental referenced to the top of the display graticule.
d. Set the spectrum analyzer center frequency to $20.002,20.003$, and 20.004 MHz , verifying in each case that all spurious signals are more than 70 dB below the fundamental.

### 4.30. HP-JB Intarface Test.

4-31. The following calculator program tests the operation of the 3325A HP-IB interface circuits. The program is written for an hp- Model 9825A calculator but may be adapted for other controllers.

## Equipment Required:

-hp- Model 9825A Calculator equipped with:
98034A HP-IB Interface (set to select code 7)
Any combination of ROM's that includes a General I/O ROM and an Extended I/O ROM
a. Connect the calculator interface cable to the 3325A rear panel HP-IB connector. It is recommended that no other equipment be connected to this HP-IB during this test.
b. Enter the program into the calculator.
c. Press RUN. Tests 4 through 7 in this program require the operator to press CONTINUE if the test passes, or 1 CONTINUE if the test fails. If the Test 4 question ( $\$ \mathrm{RQ}$ LIGHT ON?, $1=\mathrm{NO}$ ) does not appear in the calculator display within 30 seconds after start of the program (RUN), the 3325A and calculator are not interfacing properly. The calculator may display an error indication that will identify the problem. If not, the 3325A HP-IB circuits are probably not operating correctly.

Instrument Returns To Known Conditions After Self
Test

Test 1 - Did Frequency Go To 1000 Hz ?

Test 2 - Interrogate Frequency

Test 3 - Interrogate Amplitude

Test 4 - Test SRO Circuits

Test 5 - Test Talk Circuits

Test 6 - Test Listen Circuits

Test 7 - Test Remote Circuits

PROGRAM FLOWCHART



```
| F
%" ए%" "马夕ご#"
O: pr"% "HF--TE "EEST"
```






```
|EM
#
```





```
1.3 ram AnF ——_Read 3325A Frequency
```



```
|. 施"
```




```
&# wrt. F"S"3" ——_Store Settings in Register 3
```



```
#" M"t Ay"EES
|:
2" "TEST 巳"*
```





```
2%
Е7" "TEET#":
```


$\qquad$

``` Interrogate Amplitude
20" rectunH
Read Amplitude
```



```
%"
```



```
"#
```





```
*',",
#%
```






```
4%",
%"
44"
":
*";
F:
|":
```





```
Fサ"! "TE:GT FEGULT㐌品"
```









```
4%4%%
```

Variables used in this Test Program:
A Address of 3325A (defaults to 717)
F Frequency read from 3325A in test \#1
G Frequency read from 3325A in test \#2
H Amplitude read from 3325A in test \#3
I Counter used to print test results
r1-r7 Test results ( $0=$ Pass, $1=$ Fail)
S Status read from 3325A in test \#5

## Samples of Program Printouts:



## 4-32. PERFORMANCE TESTS.

4-33. The following procedures compare the instrument operation to its specifications, listed in Table 1-1. A Performance Test Record is located at the end of this section. This Test Record lists all of the tested specifications and the acceptable limits. For ease of recording data at various times, copies of the blank Performance Test Record may be made without written permission from Hewlett-Packard.

4-34. The Performance Tests include the following:
Par No. Test
4-37 Harmonic Distortion
4-39 Spurious Signal Tests
4-41 Integrated Phase Noise

Amplitude Modulation Envelope Distor tion
4-45 Square Wave Rise Time and Aberrations
4-47 Ramp Retrace Time
4-49 Sync Output
4-51 Square Wave Symmetry
4.53 Frequency Accuracy

4-55 Phase Increment Accuracy
4-57 Phase Modulation Linearity
4-59 Amplitude Accuracy

DC Offset Accuracy (DC Only)
DC Offset Accuracy with AC Functions
Triangle Linearity
X Drive Linearity
Ramp Period Variation
HP-IB Interface Test

Table 4-2. Test Equipment Required For Performance Tests.

Instrument	Critical Spacifications	Recammended Madel
High Frequency Spectrum Analyzer	Frequency Range: 1 kHz to 80 MHz Amplítude Acçracy: $\pm 0.5 \mathrm{~dB}$ Noise: $>70 \mathrm{~dB}$ below reference	-hp- $141 \mathrm{~T} / 8552 \mathrm{~B} / 8553 \mathrm{~B} /$ 8566A/8568A
50-ohm Load	Accuracy: $\pm 0.2 \%$ Power Rating: 1 W	*hp-Model 11048 C
Resistor	56.2n 1/8W 1.0\%	-hp-0757-0395
Low Frequency Spectrum Analyzer	Frequency Range: 20 Hz to 50 kHz   Amplitude Aф币џracy: $\pm 0.5 \mathrm{~dB}$   Spurious Responses: 80dB below reference	-hp-3580A/3585A
Sine Wave Signal Source	Frequency Range: 1 MHz to 21 MHz   Amplitude Range: to +13.01 dBm   Output Impedance: 508   Phase Noise (Integrated): $9.9 \mathrm{MHz}:<-63 \mathrm{~dB}$ $20 \mathrm{MHz}:<-70 \mathrm{~dB}$   Spurious: $>75 \mathrm{~dB}$ below fundamental	-hp-3335A
Double Balanced Mixer	Impedance: $50 \Omega$   Frequency Range: i $\mathrm{MHz}-20 \mathrm{MHz}$	-hp-10534A
AC/DC Digital Voltmeter	AC function (True RMS)   Ranges: 1 V to 100 V   Aceuracy: $\pm 0.2 \%$   Resolution: 6 digits   Crest Factor: 4:7   DC Function   Ranges: 0.1 V to 100 V   Accuracy: $\pm 0.05 \%$   Resplution: 6 digits	-hp-3455A
1 MHz Low Pass Filter	Cut-off Frequency: 1 MHz   Stopband Atten: 50 dB by 4 MHz   Stopband Freq: $4 \mathrm{MHz}-80 \mathrm{MHz}$	F882 1 MHz LPF Allen Avionics, the. 224 E \$econd \$t. Mineola, NY 11501
15 kHz Filter	Consisting of:   Resistor: $10 \mathrm{kO} 1 \%$ Capacitor: 1600 pF 5\%	$\begin{aligned} & \text {-hp-0757-0340 } \\ & \text {-hp- } 0160.2223 \end{aligned}$
Resistor	470s 2W 5\%	-hp-0698-3634
AC Voltmeter	Ranges: 0.1 V to 1 V   Frequency Range: 2] $\mathrm{Hz}-1 \mathrm{MHz}$   Input Impedance: z 1 M $\Omega$   Meter: Log scale   Ace ( 100 Hz to 10 kHz ); $\pm 1 \%$	-hp-400FL
Sine Wave Signal Source	Frequency: 10 kHz   Amplitude: 1 V rms into $20 \mathrm{k} \Omega$   Distortion: -60 dB	-hp-204¢

Table 4-2. Test Equipment Required For Performance Tests (Cont'd).

Instrument	Critical Specifitations	Recommended Model
Opcilloscope	Vertical:   Bandwidth: de to 100 MHz   Deflection: 1 V to $5 \mathrm{~V} / \mathrm{div}$ Horizontal:   Sweep: $0.05 \mu \mathrm{~s}$ to $1 \mathrm{~s} / \mathrm{div}$ $\times 10$ magnification	-hp. 1740A
Electronic Counter	Frequency measurement   Frequency Range: to 20 MHz   Resolution: 8 digits   Accuracy: $\pm 2$ counts   Time Interval Average $A$ to $B$   Respolution: 0.01 ns	-hp- 5328A   With Option O40 or 041
DC Power Supply	Volts: 0 to $\pm 5 \mathrm{~V}$   Amps: 10 mA   Floating Output	-hp- E214A
Thermal Converter	```Input Impedance: 50\Omega Input Voltage: 1 V rms Frequency: 2 kHz to 20 MHz Frequpncy Response: }\pm0.05\textrm{dB 2 kHz}\mathrm{ to 20 MHz```	-hp-11050A
Resistive Divider	Consisting of:   2 Resistors: 61.11 日, $1 \% 1 / 4 \mathrm{~W}$   2 Resistors; $36.55 \Omega .1 \% 1 / 8 \mathrm{~W}$	$\begin{array}{r} -h p-0699-0090 \\ -h p-0698-7169 \\ \hline \end{array}$
Resistivg Divider	```Capacitor: 300 pF 5% Consisting of: 3 Resistors: 1330 \.1% 1/4 W Resistor: 430.1% 1/8 W```	$\begin{aligned} & \text {-hp- 0160-2207 } \\ & \text {-hp- 0698.7453 } \\ & \text {-hp- 0698-8264 } \end{aligned}$
High-Speed DC Digital Voltmeter	DC Voltage: 0 to $\pm 10 \mathrm{~V}$   External Trigger: Low True   TTL Edge Trigger   Trigger Delay: Selectable $10 \mu \mathrm{~s}$ to $140 \mu \mathrm{~s}$	-hp-3437A
BNC-to-Triax Adapter	50 ohm	-hp- 1250 -0595 Adgpter or 11172A RF Cable
Resistive Divider $+2,5$	Consisting of:   Resistor: $30 \Omega 1 \% 1 / 4 \mathrm{~W}$   Resistor: $20 \Omega 1 \% 1 / 4 \mathrm{~W}$	$\begin{aligned} & -h p-0698-7533 \\ & -h p-0698.6296 \\ & \hline \end{aligned}$
Resistive Divider $+2.6$	Consisting of:   Resistor: $100 \mathrm{k} \Omega 1 \% 1 / 8 \mathrm{~W}$   Resistor: $162 \mathrm{k} \mathrm{\Omega} 1 \% 1 / 8 \mathrm{~W}$	$\begin{aligned} & \text {-hp- 0757-0465 } \\ & \text {-hp- } 0757-0470 \\ & \hline \end{aligned}$
Calculator	HP-IB Control Capability	$-h p-9825 \mathrm{~A}$ with 98034A Interface, General I/O ROM, Extended 1/O ROM
Adapter	Female BNC-to-Dual Bannania Plug BNC Tee	$\begin{aligned} & \text {-hp- } 1250-2277 \\ & \text {-hp- } 1250-0781 \end{aligned}$
Step Attenuator	0-12dB; 1dB steps	-hp-355C

### 4.35. Equipment Required.

4-36. The test equipment required for the Performance Tests is listed in Table 4-2. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model.

### 4.37. Harmonic Distortion Test.

4-38. This procedure tests the harmonic distortion of the 3325A sine wave output against the following specifications from Table 1-1.

## Harmonic Distortion (relative to fundamental)

Fundamental<br>Frequency

No Harmonic Greater Than

0.1 Hz to 50 kHz	-65 dB
50 kHz t 200 kHz	-60 dB
200 kHz to 2 MHz	-40 dB
2 MHz to 15 MHz	-30 dB
15 MHz to 20 MHz	-25 dB

Equipment Required:
High Frequency Spectrum Analyzer (-hp- Model $141 \mathrm{~T} / 8552 \mathrm{~B} / 8553 \mathrm{~B} / 8566 \mathrm{~A} / 8568 \mathrm{~A}$ )
Low Frequency Spectrum Analyzer (-hp- Model 3580A/3585A)
50-ohm Feedthru Termination (-hp- Model 11048C)
Resistor 4700 2W 5\% (-hp- 0698-3634)
Resistor $56.2 \Omega 1 / 8 \mathrm{~W} 1 \%$ (-hp- 0757-0395)
a. Set the 3325A output as follows:

High Voltage Output (Option 002) . . . . . Off
Function ................................ . . Sine
Frequency . . . . . . . . . . . . . . . . . . . . . . 20 MHz
Amplitude . . . . . . . . . . . . . . . . . . . 999mVp-p
b. Connect the 3325 A signal output to the high frequency spectrum analyzer's 50 ohm input.
c. Set the spectrum analyzer controls to display the fundamental and at least four harmonics. Verify that all harmonics are 25 dB below the fundamental.
d. Set the 3325 A to the following frequencies and verify that all harmonics are below the specified levels, relative to the fundamental.

15 MHz	-30 dB
2 MHz	-40 dB
200 kHz	-60 dB

e. Disconnect the 3325A from the high frequency spectrum analyzer and connect it to the low frequency spectrum analyzer's 50 ohm input.
f. Set the 3325 A frequency to 50 kHz and the amplitude to 9.99 mVp -p.
g. Set the spectrum analyzer controls to display the fundamental and at least three harmonics. (It may be necessary to decrease the analyzer's video bandwidth to separate the harmonics from the noise floor.) Verify that all harmonics are a least 65 dB below the fundamental.
$h$. Set the 3325A to the following frequencies and verify
that all harmonics are 65 dB below the fundamental.
10 kHz
1 kHz
100 Hz

## High Voltage Output (Option 2)

i. Connect the 3325 A signal output to the low frequency spectrum analyzer's $50 \Omega$ input. (See Figure 4-1.)
j. Press the "high voltage output" key on the 3325A. Set the amplitude to $40 \mathrm{Vp}-\mathrm{p}$ and the frequency to 100 Hz .
$k$. Set the spectrum analyzer controls to display the fundamental and at least three harmonics. Verify that all harmonics are 65 dB below the fundamental.

1. Set the 3325A to the following frequencies and verify that their harmonics are below the specified level, relative to the fundamental.

$$
\begin{array}{ll}
10 \mathrm{kHz} & -65 \mathrm{~dB} \\
200 \mathrm{kHz} & -60 \mathrm{~dB} \\
& \\
1 \mathrm{MHz} & -40 \mathrm{~dB}
\end{array}
$$

m. Press the high voltage output key to deactivate the high voltage output.

## 4-39. Spurious Signal Tests.

4-40. This procedure tests the 3325 A sine wave output for spurious signals. Circuits within the 3325 A may generate repetitive frequencies that are not harmonically related to the fundamental output frequency. All spurious signals must be more than 70 dB below the fundamental signal or less than -90 dBm , whichever is greater.

Equipment Required:
Spectrum Analyzer (-hp- Model 3585A/8566A/ 8568A)

SPECTRUM ANALYZER


Figure 4.2. Mixer Spurious Test

## Mixer Spurious Test

a. Connect the 3325 A signal output to the spectrum analyzer 50 ohm (RF) input and the 3325A EXT REF input to the analyzer's 10 MHz reference output. (See Figure 4-2.)
b. Set the 3325A as follows:
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 dBm
Ampline
Frequency . . . . . . . . . . . . . . . . . . . . . 2.001 MHz
c. Set the analyzer controls as follows:

Center Frequency . . . . . . . . . . . . . . . . . . . 2.001 MHz
Frequency Span ............................... . . 1 kHz
Video BW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Hz
Resolution BW .............................. . . 30 Hz
d. Adjust the spectrum analyzer to reference the fundamental to the top display graticule.
e. Without changing the reference level, change the spectrum analyzer center frequency to 27.999 MHz to display the $2: 1$ mixer spur. Verify that this spur is at least 70 dB below the fundamental.
f. Change the spectrum analyzer center frequency to 25.998 MHz to display the $3: 2$ mixer spur. Verify that this spur is at least 70 dB below the fundamental.
g. In a similar manner, change the 3325A's frequency and the spectrum analyzer center frequency to the following frequencies. For each setting, verify that all spurious signals are 70 dB below the fundamental.

3325A Frequency

	2.1 Spur	3:2 Spur
4.100 MHz	25.9 MHz	21.8 MHz
6.100 MHz	23.9 MHz	17.8 MHz
8.100 MHz	21.9 MHz	13.8 MHz
10.100 MHz	19.9 MHz	9.8 MHz
12.100 MHz	17.9 MHz	5.8 MHz


14.100 MHz	15.9 MHz	1.8 MHz
16.100 MHz	13.9 MHz	2.2 MHz
18.100 MHz	11.9 MHz	6.2 MHz
20.100 MHz	9.9 MHz	10.2 MHz

## Close-in Spurious Test <br> (Fractional N Spurs)

h. Set the 3325 A frequency to 5.001 MHz and the amplitude to -2.99 dBm .
i. Set the spectrum analyzer controls as follows:

Center Frequency	zz
Frequency Span	1 kHz
Video BW	100 Hz
Resolution BW	30 Hz

k. Without changing the reference level, change the spectrum analyzer center frequency to 5.002 MHz to display the API 1 spur. It may be necessary to decrease the analyzer's video bandwidth to optimize the display resolution.

1. All spurious (non-harmonic) signals should be at least 70 dB below the fundamental.
m . Without changing the reference level, set the 3325 A frequency and the spectrum analyzer center frequency to the frequencies listed below. For each setting, verify that all spurious signals are at least 70 dB below the fundamental.

3325A Frequency	Spectrum Analyzer   Center Frequency
5.0001 MHz	5.0011 MHz
5.00001 MHz	5.00101 MHz
5.000001 MHz	5.001001 MHz
20.001 MHz	20.002 MHz
20.001 MHz	20.003 MHz
20.001 MHz	20.004 MHz
20.001 MHz	20.005 MHz



Figure 4-3. Integrated Phase Noise Test

### 4.41. Integrated Rhase Noise Test.

4-42. This test compares the integrated phase noise to the specification in Table 1-1, which is:
-60 dB for a 30 kHz band centered on a 20 MHz carrier (excluding $\pm 1 \mathrm{~Hz}$ about the carrier).

Equipment Required:
Sine wave signal source (-hp- Model 3335A)
Mixer (-hp- Model 10534A)
50 -ohm load (-hp- Model 11048C)
DC digital voltmeter (-hp- Model 3455A)
AC voltmeter (-hp- Model 400 FL )
15 kHz noise equivalent filter consisting of: Resistor: $10 \mathrm{k} \Omega \pm 1 \%$ (-hp- Part No. 0757-0340)
Capacitor: $1600 \mathrm{pF} \pm 5 \%$ (-hp- Part No. 0160-2223) See Figure 4-3
1 MHz Low Pass Filter (Model F882 - Allen Avionics)
a. Connect the equipment as shown in Figure 4-3, connecting the 15 kHz noise equivalent filter output to the ac voltmeter. Phase lock the 3325A and the signal generator together.
b. Set the 3325A as follows:

Function . Sine
Frequency . . . . . . . . . . . . . . . . . . 19.901 MHz
Amplitude . . . . . . . . . . . . . . . . . . . . . . 0 dBm
c. Set the sine wave signal source (reference) as follows:

Frequency ........................... 19.9 MHz
Amplitude . . . . . . . . . . . . . . . . . . +7.00 dBm
d. Record the ac voltmeter reading ( dB scale).
e. Change 3325A frequency to 19.9 MHz .
f. Connect the 15 kHz filter output to the de digital voltmeter.
g. Press the 3325A PHASE entry key. Using the MODIFY keys, adjust the 3325A output phase for a minimurn reading on the digital voltmeter.
h. Disconnect the 15 kHz filter output from the digital voltmeter and connect it to the ac voltmeter.
i. Record the ac voltmeter reading (dB scale) and subtract it from the reading recorded in Step d. The difference should be -54 dB or greater. Add -6 dB to this number and enter on the performance test card. The 6 dB is a correction factor compensating for the folding action of the mixer.

## NOTE

Frequencies used minimize the phase noise contribution of the 3335 A .

## 4-43. Amplitude Modulation Envelope Distortion Test.

4-44. This procedure tests the 3325A against the amplitude modulation envelope distortion specification in Table 1-1:

> -30 dB to $80 \%$ modulation at $10 \mathrm{kHz}, 0 \mathrm{~V}$ dc offset

Equipment Required:
Sine wave signal source (-hp- Model 204C)
Spectrum Analyzer (-hp- Model 141T/3585A/8552B/ 8553B/8566A)
a. Connect the equipment as shown in Figure 4-4.
b. Set the 3325A output as follows:

Function	Sine
Frequency	1 MHz
Amplitude	. 3 Vp -p
DC Offset	. 0 V
High Voltage Output (Option 002)	Off
AM.	On

c. Set the modulating signal source frequency to 10 kHz and adjust the level to produce $80 \%$ modulation of the 3325 A output. $80 \%$ modulation is indicated by


Figure 4.4. AM Envelope Distortion
modulation sidebands being 8.0 dB down from the carrier, as viewed on the $2 \mathrm{~dB} /$ div display of the spectrum analyzer.
d. Adjust the spectrum analyzer to display the fundamental frequency, the 10 kHz sideband frequency, and at least 4 harmonics of the sidebands. All harmonics should be at least 30 dB lower than the modulation sidebands.

## 4-45. Square Wave Rise Time and Abberations.

4-46. This procedure compares the 3325A square wave output to its rise/fall time and overshoot specifications in Table 1-1.

Rise and Fall Time: $<20 \mathrm{~ns}, 10 \%$ to $90 \%$ at full output
Overshoot: \& $5 \%$ of $\mathrm{p}-\mathrm{p}$ amplitude at full output

Equipment Required: Oscilloscope (-hpModel 1740A)
a. Connect the 3325A signal output to the oscilloscope vertical input. If the oscilloscope is an -hpModel 1740A, set the input switch to the 50 -ohm position. If your oscilloscope does not have a 50 -ohm input, use a 50 -ohm load (-hp- Model 11048C 50 -ohm feedthru termination) at the input.
b. Set the 3325A as follows:

$$
\begin{aligned}
& \text { High Voltage Output (Option 002) . . . . . Off } \\
& \text { Function . . . . . . . . . . . . . . . . . . . . . Square } \\
& \text { Frequency . . . . . . . . . . . . . . . . . . . . . } 10 \text { V p p-p } \\
& \text { Amplitude . . . . . . . . . . . . . }
\end{aligned}
$$

c. Adjust the oscilloscope vertical and horizontal controls so that the square wave rise time between the $10 \%$ and $90 \%$ points can be measured. Rise time should be less than 20 nanoseconds.
d. Adjust the oscilloscope to measure the square wave fall time between the $90 \%$ and $10 \%$ points. Fall time should be less than 20 nanoseconds.
e. Expand the oscilloscope vertical display and adjust controls so that the overshoot can be measured. Overshoot should be less than 500 mV at positive and negative peaks.

## 4-47. Ramp Retrace Time.

4-48. This test compares the retrace time of the positive and negative slope ramps to the specifications in Table 1-1:

$$
<3 \mu \mathrm{~s} 90 \% \text { to } 10 \%
$$

Equipment Required: Oscilloscope (-hp- Model 1740A)
a. Connect the 3325A signal output to the oscilloscope vertical input. If the oscilloscope is an -hp-

Model 1740A, set the input switch to the 50 -ohm position. If your oscilloscope does not have a 50 -ohm input, use a 50 -ohm load (-hp- Model 11048C 50-ohm feedthru termination) at the input.
b. Set the 3325A as follows:

High Voltage Output (Option 002) . . . . Off
Function ............... Positive Slope Ramp
Frequency . . . . . . . . . . . . . . . . . . . . . . . 10 kHz
Amplitude . . . . . . . . . . . . . . . . . . . . . 10 V p-p
c. Adjust the oscilloscope vertical and horizontal controls so that the ramp retrace time from the $90 \%$ to $10 \%$ points can be measured. Retrace time should be less than $3 \mu \mathrm{~s}$.
d. Change function to negative slope ramp and repeat Step c.

### 4.49. Sync Output Test.

4-50. This procedure checks the voltage levels of the sync output square wave:

$$
\mathrm{V}_{\text {high }}>+1.2 \mathrm{~V} ; \mathrm{V}_{\text {low }} \leqslant+0.2 \mathrm{~V} \text { into } 50 \mathrm{ohms}
$$

Equipment Required: Oscilloscope (-hp- Model 1740A)
a. Connect the 3325A sync output to the oscilloscope vertical input. If the oscilloscope is an -hp- Model 1740 A , set the input switch to the 50 -ohm position. If your oscilloscope does not have a 50 -ohm input, use a 50 -ohm load at the input (-hp- Model 11048 C 50 -ohm Feedthru Termination).
b. Set the 3325A function to sine, frequency to 20 MHz .
c. Adjust the oscilloscope controls to measure the high and low levels of the sync square wave. The high level should be greater than +1.2 V and the low level should be less than +0.2 V .

## 4-51. Square Wave Symmetry.

4-52. This procedure checks the symmetry of the square wave signal output to the specification in Table 1-1:

$$
0.02 \% \text { of period }+3 \text { nanoseconds }
$$

Equipment Required: Electronic counter (-hp- Model 5328A)
a. Connect the 3325 A signal output to both inputs of the electronic counter, using a $B N C$ tee (see Figure 4-5).
b. Set the 3325A output as follows:
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 MHuare
Frequency
Amplitude . . . . . . . . . . . . . . . . . . . . . 1 V rms
DC Offset . . . . . . . . . . . . . . . . . . . V
c. Adjust the electronic counter to measure time interval average A to B, with Slope A + , Slope B - . Note the reading.
d. Change Slope A to - , Slope $B$ to + . Reading should be equal to the reading in Step c $\pm \leqslant 3.2 \mathrm{~ns}$.


Figure 4.5. Square Wave Symmetry.

### 4.53. Frequency Accuracy.

4-54. This test compares the accuracy of the 3325A output signal to the specification in Table 1-1:

$$
\pm 5 \times 10^{-6} \text { of selected frequency }
$$

Equipment Required: Electronic Counter (-hp- Model 5328A, calibrated within three months or with an accurate 10 MHz external reference input)
a. Connect the 3325A signal output to the electronic counter channel A input with a $50 \Omega$ load. Allow 3325A and counter to warm up for 20 minutes.
b. Set the 3325 A output as follows:
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sine
Frequency . . . . . . . . . . . . . . . . . . . $0.99 \mathrm{Vp} z$
Amplitude
DCOffset . . . . . . . . . . . . . . . . . . . . . . . . . 0 V
c. Sct the counter to count the frequency of the $\mathbf{A}$ input with 0.1 Hz resolution, and adjust for stable triggering. Electronic counter should indicate 20000000.0 Hz $\pm 100 \mathrm{~Hz}$.
d. Change 3325A function to square wave. Frequency automatically changes to 10 MHz . Electronic counter should indicate $10000000.0 \mathrm{~Hz} \pm 50 \mathrm{~Hz}$.
e. Change the 3325 A function to triangle. Frequency automatically changes to 10 kHz . Move the counter input to the sync output of the 3325A. Set the counter to average 1000 periods. Electronic counter should indicate 100 $000.00 \mathrm{~ns} \pm 0.5 \mathrm{~ns}$.
f. Change 3325A function to positive slope ramp. Electronic counter should indicate $100,000 \mathrm{~ns} \pm .5 \mathrm{~ns}$.

### 4.55. Phase Increment Accuracy.

4-56. This test compares the phase increment accuracy of the 3325A to the specification in Table 1-1:

$$
\pm 0.2^{\circ}
$$

Equipment Required:
Sine wave signal source (-hp- Model 3335A)
Electronic Counter (Hp- Model 5328A)
a. Connect the equipment as shown in Figure 4-7.
b. Set the 3325A as follows:
High Voltage Output (Option 002) . . . . . Off
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 kHz
Frequency . . . . . . . . . . . . . . . . . . . 13 dBm
c. Set the sine wave signal source (3335A) as follows:
Frequency
0.1 MHz
Amplitude
.13 dBm
d. Set the electronic counter (5328A) as follows:

Function . . . . . . . Time Interval Avg. A to B
Frequency Resolution, N . . . . . . . . . . . . . . $10^{5}$
Inputs . . . . . . . . . . . . . . . . . . . 50 贝, Separate
Slope A and B . . . . . . . . . . . . . . . . . . . Positive
Sample Rate . . . . . . . . . . . . . . . . . . Maximum


Figure 4-6. Frequency Aceuracy.
e. Press the 3325A PHASE entry key to display phase. Using the Modify keys, adjust the phase until the counter reads approximately 200 nanoseconds. Press the 3325A blue entry prefix key, then ASGN ZERO PHASE.
f. Set the electronic counter sample rate to HOLD. Press RESET. Record the counter reading (to 2 decimal places) on the Performance Test Record in the space for "Zero Phase Time Interval". This is the phase difference (in nanoseconds) between the 3325A output and the reference signal.
g. Set the 3325A phase to $-1^{\circ}$.
h. Press the electronic counter RESET. Record the counter reading (to 2 decimal places) in the space for " $1^{\circ}$ Increment Time Interval".
i. Determine the time difference between the counter readings in Step $h$ and Step $f$, and record in the "Time Difference" column. The difference should be from 22.22 ns to 33.34 ns.
j. Set the 3325A phase to $-10^{\circ}$.
k. Press the electronic counter RESET. Record the counter reading to the space for " $10^{\circ}$ Increment Time Interval".

1. Enter the time difference between the "Zero Phase Time Interval" and the reading in Step k in the "Time Difference" column. This should be from 272.22 ns to 283.34 ns .
m. Set the 3325 A phase to $-100^{\circ}$.


Figure 4-7. Phase Increment Accuracy.


Figure 4-8. Phase Modulation Linearity.
n. Press the electronic counter RESET. Record the counter reading in the space for " $100^{\circ}$ Increment Time Interval'".
o. Enter the time difference between the "Zero Phase Time Interval" and the reading in Step $n$ in the "Time Difference' column. It should be from 2722.22 ns to 2783.34 ns.

## 4-57. Phase Modulation Linearity.

4-58. This procedure tests the phase modulation linearity. The specification in Table 1-1 is:

$$
\pm 0.5 \% \text {, best fit straight line }
$$

Equipment Required:
Sine wave signal source (-hp- Model 3335A)
Electronic counter (-hp- Model 5328A)
DC power supply (-hp- Model 6214A)
Digital voltmeter (-hp- Model 3455A)
a. Connect the equipment as shown in Figure 4-8.
b. Set the 3325A as follows:

High Voltage Output (Option 002) . . . . . Off
Function . . . . . . . . . . . . . . . . . . . . . . . . . Sine
Frequency . . . . . . . . . . . . . . . . . . . . . . 100 kHz
Amplitude . . . . . . . . . . . . . . . . . . . . . . 13 dBm
Phase Modulation . . . . . . . . . . . . . . . . . . . On
c. Set the sine wave signal source (3335A) as follows:

Frequency . . . . . . . . . . . . . . . . . . . . . . 100 kHz
Amplitude . . . . . . . . . . . . . . . . . . . . . . 13 dBm
d. Set the electronic counter (5328A) as follows:

Function . . . . . .Time Interval Avg. A and B Frequency Resolution, $N . . . . . . . . . . . . . . . ~ . ~ 10^{5}$
Inputs . . . . . . . . . . . . . . . . . . . $50 \Omega$, Separate
Slope A and B . . . . . . . . . . . . . . . . . . . Positive
Sample Rate . . . . . . . . . . . . . . . Maximum
e. Using the digital voltmeter to monitor the dc power supply output, set the dc voltage as near -5.0000 V as possible.
f. Press the 3325A PHASE entry key to display phase. Using the Modify keys, adjust the phase until the counter reads approximately 200 nanoseconds. Record the counter reading as a reference for the following steps.
g. As soon as possible after recording the counter reading, note the digital voltmeter reading and record on the Performance Test Record in the "DVM Reading, $x_{1}$ " space.
h. Press the 3325A blue prefix key, then ASGN ZERO PHASE.
i. Change the dc power supply output to -4.0000 V .
j. Using the Modify keys, adjust the 3325 A phase to return the counter reading to the value recorded in Step f.
k . Record the digital voltmeter reading in the "DVM Reading, $\mathrm{X}_{2}$ " space.

1. The 3325A display indicates the phase change resulting from the 1 V change in modulating voltage. Record the phase display in the "Phase Difference, 2" space (positive value).
m. Press the 3325A blue prefix key, then ASGN ZERO PHASE.
n. Change the power supply output to the following voltages and repeat Steps $j$ through $m$ for each. Record the dvm readings and phase differences in the appropriate spaces on the Performance Test Record.

DC   Voltage	DVM   Reading	Phase   Difference
-3.0000 V	$\mathrm{x}_{3}$	3
-2.0000 V	$\mathrm{x}_{4}$	4
-1.0000 V	$\mathrm{x}_{5}$	5
0.0000 V	$\mathrm{x}_{6}$	6
+1.0000 V	$\mathrm{x}_{7}$	7
+2.0000 V	$\mathrm{x}_{8}$	8
+3.0000 V	$\mathrm{x}_{9}$	9
+4.0000 V	$\mathrm{x}_{10}$	10
+5.0000 V	$\mathrm{x}_{11}$	11

o. Enter the cumulative phase change in the "Cumulative Phase" column. That is, enter the " 2 " Phase Difference in the $y_{2}$ space, then add the " $y_{2}$ " and " 3 " values and enter in the $y_{3}$ space. Add the " $y_{3}$ " and " 4 " values and enter in $y_{4}$, etc.
p. On the Performance Test Record, multiply each $x$ value by the corresponding $y$ value and enter in the " $x$ times y" column.
q. Total the 'DVM Reading' column and enter in the $\Sigma x$ space. Total the "Cumulative Phase" values and enter in the $\Sigma y$ space. Total the " $x$ times $y$ ' values and enter in the $\Sigma x y$ space.
r. Square each $x$ value and enter in the " $x^{2}$ " column. Total this column and enter in the $\Sigma x^{2}$ space.
s. Square the $\Sigma x$ value and enter in the $(\Sigma x)^{2}$ space.
t. Multiply the $\Sigma x$ value by the $\Sigma y$ value and enter in the $\Sigma x \Sigma y$ space.
u . The equation for determining the "best fit straight line' specification for each y value is:

$$
y=a_{1} x+a_{0}
$$

Where: $a_{1} x$ and $a_{0}$ are constants to be calculated from data taken previously

Where: $x$ is the value of the modulating voltage, recorded as $x_{1}$ through $X_{11}$
v. First determine the value of $a_{1}$ using the following equation:

$$
a_{1}=\frac{\Sigma x y-\frac{\Sigma x \Sigma y}{n}}{\Sigma x^{2}-(\Sigma x)^{2} / n}
$$

Where: $\Sigma x, \Sigma y, \Sigma x y, \Sigma x \Sigma y, \Sigma x^{2}$, and ( $\left.\Sigma x\right)^{2}$ are the previously calculated values entered on the Performance Test Record
$\mathrm{n}=11$ (the number of points to be calculated)
$w$. Determine the value of $a_{0}$ using the equation:

$$
\mathrm{a}_{0}=\frac{\Sigma y}{\mathrm{n}}-\mathrm{a}_{1} \frac{\Sigma \mathrm{x}}{\mathrm{n} 1}
$$

$x$. Calculate each value for $y$ using the equation: $y=$ $a_{1} x+a_{0}$. Enter each result on the Performance Test Record in the "Best Fit Straight Line Values" column, ( $y_{1}$ through ( $y_{11}$ ).
y. Determine the test limits for each y value by increasing and decreasing the calculated (y) values by $0.5 \%$ of the ( $\mathrm{y}_{11}$ ) value. Enter in the Maximum and Minimum columns.
z. Transfer the $y_{1}$ through $y_{11}$ "Cumulative Phase" entries to the "Measured Cumulative Phase" column. Each value should be within the calculated limits.

### 4.59. Amplitude Accuracy.

4-60. This procedure tests the amplitude of the 3325 A ac function output signals against the accuracy specifications in Table 1-1.

## Equipment Required:

AC/DC digital voltmeter (-hp- Model 3455A, average converter opt. 001 preferred)

AC: Accuracy sufficient to verify a $1 \%$ specification to 100 kHz .
DC: Resolution, 1 microvolt.
High speed DC voltmeter (-hp- Model 3437A). At least $31 / 2$-digit resolution, $11 / 2$ microsec. or faster settling time.
50-Ohm step attenuator (-hp- Model 355C)
50-Ohm feedthru termination (-hp- Model 11048C)
Thermal converter (-hp- Model 11050A)
Oscilloscope (-hp- Model 1740A) Must have delayed sweep of .05 microsec/div and delayed sweep gate output.

## Components:

Resistor 36.55 ohm $0.1 \% 0.125 \mathrm{~W} 2$ ea 0698-7169
Resistor 61.11 ohm $0.1 \% 0.25 \mathrm{~W} 2$ ea 0699-0090
Resistor 43ohm" 0.1\% 0.125W 1 ea 0698-8264
Resistor 1330ohm* 0.1 $\%$ 0.25W 3 ea 0698-7453
Capacitor $300 \mathrm{pF}^{*} 5 \% 1$ ea $0160-2207$
*Used only to test High Voltage (option 002).

## Amplitude Accuracy at Frequencies up to $100 \mathbf{k H z}$

a. Sine Wave Test. Connect the 3325A signal output through a 50 ohm feedthrough termination to the AC digital voltmeter input.
b. Set the 3325 A as follows:

High Voltage Output (Option 002)	Off
Function	Sine
Frequency	100 Hz
Amplitude	$3.536 \mathrm{~V}_{\text {RMS }}(10 \mathrm{Vp}-\mathrm{p})$
DC Offset	0 V

c. Press AMPTD CAL key.
d. Read AC Voltmeter. Change 3325A frequency to 1 kHz and 100 kHz and repeat. Verify that all three voltmeter readings are between $3.495 \mathrm{~V}_{\mathrm{RMS}}$ and 3.577 $V_{\text {RMS }}( \pm 0.1 \mathrm{~dB})$.
e. Change 3325A amplitude to $1.061 \mathrm{~V}_{\mathrm{RMS}}$ (3 Vp-p) and take ac voltage readings for $100 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 100 kHz as above. Verify that all three voltmeter readings are between $1.048 \mathrm{~V}_{\mathrm{RMS}}$ and $1.073 \mathrm{~V}_{\mathrm{RMS}}( \pm 0.1 \mathrm{~dB})$.
f. Change 3325A amplitude to $.3536 \mathrm{~V}_{\mathrm{RMS}}$ and set dc offet to 1 mV . Set 3325 A frequency to $(100 \mathrm{~Hz}, 1 \mathrm{kHz}$, and 100 kHz and read ac voltage, Verify that all three readings are between $.3411 \mathrm{~V}_{\mathrm{RMS}}$ and $.3660 \mathrm{~V}_{\mathrm{RMS}}$ ( $\pm 0.3 \mathrm{~dB}$ ).
g. Function Test. Connect 3325A sync output to external trigger input of oscilloscope. Connect 3325A signal output to the voltage divider of Figure 4-10(A). Connect the voltage divider output to oscilloscope vertical input and to high speed voltmeter input. Connect delayed sweep gate from oscilloscope to external trigger input of high speed voltmeter. See Figure 4-9A.

h. Set the 3325A as follows:	
High Voltage Output (Option 2)	OFF
DC Offset	0 V
Amplitude	$10 \mathrm{Vp-p}$
Frequency	99.9 Hz
Function	Square
i. Set the oscilloscope as follows:	
Display	A or B
Vertical Sensitivity	.5 volts/div
Trigger	Ext
Main Sweep	$1 \mathrm{msec} / \mathrm{div}$
Delayed Swecp	$5 \mu \mathrm{sec} / \mathrm{div}$
Delay	250

j. Set the 3437A voltmeter as follows:

Range	1.0 V
Trigger	Ext
Delay	0 sec
Coupling	DC IM

k. One cycle of the square wave should fill the screen of the oscilloscope, and the sample time for the voltmeter should be seen as the intensified spot of the delayed sweep.
l. Press AMPTD CAL on the 3325A.
m. Read positive peak voltage of attenuated waveform on voltmeter. If the reading is not stable, press hold, then ext. alternatively to repeat readings. Change oscilloscope delay to 750 and read negative peak. Add the two readings to obtain volts peak to peak. Verify that sum is between 3.661 volts and 3.735 volts.
п. Change 3325 A function to Triangle. Change oscilloscope to:

Vertical Sensitivity	.2 volts/div
Vertical Position	$9 o^{\prime} \mathrm{clock}$
Main Sweep	$.5 \mathrm{msec} / \mathrm{div}$
Delay	500
Magnify	X10
Delayed Sweep	$1 \mu \mathrm{sec} / \mathrm{div}$

o. Adjust oscilloscope delay to place the intensified spot on peak of triangle and read positive peak voltage on 3437A. Press neg trigger, move vertical position knob of CRO to 3 o'clock and adjust intensified spot to read negative peak on the 3437A. Verify that sum of positive and negative peak voltages is between 3.643 and 3.754 volts.
p. Change 3325 A function to pos ramp. Change oscilloscope to:

$$
\begin{array}{lr}
\text { Trigger } & \text { pos } \\
\text { Main Sweep } & 2 \mathrm{msec} / \mathrm{div}
\end{array}
$$

Place spot on positive peak, press hold, then ext, then hold a few times on the 3437A and record most positive reading.
q. Move vertical position knob to 3 o'clock, adjust delay and read negative peak. Ramp jitter should be visible on all ramp readings (the 3437 A will hold the readings). Verify that sum of pos and neg peaks is between 3.643 and 3.754 volts.
r. Change 3325 A function to neg ramp. Change CRO trigger to pos and take neg ramp reading as above.
s. Change 3325A function to square and frequency to 1 kHz . Set CR0 as follows:

$$
\begin{array}{lr}
\text { Main Sweep } & 50 \mu \mathrm{sec} / \mathrm{div} \\
\text { Delayed Sweep } & .05 \mu \mathrm{sec} / \mathrm{div}
\end{array}
$$

Read positive peak; push neg trigger and read negative peak. Verify that sum is between 3.661 and 3.735 volts.
t. Change 3325A function to triangle and frequency to 2 kHz . Set CRO main sweep to $20 \mu \mathrm{sec} /$ div and delay to 610. Adjust delay and position and set pos and neg trigger to read peaks. Verify Vp-p to be between 3.643 and 3.754 volts.
u. Change 3325 function to pos ramp and frequency to 500 Hz . Set main sweep of CRO to $.2 \mathrm{msec} / \mathrm{div}$ and adjust sweep vernier to return peaks to center screen (trigger must be neg to see jitter at this point). Verify Vpp to be between 3.643 and 3.754 volts.
v. Change 3325 A function to neg ramp and CRO trigger to pos. Verify Vpp of 3.643 to 3.754 voits.
w. Change 3325 A frequency to 100 kHz and function to square. Return CRO sweep vernier to calibrate and set main sweep to $.5 \mu \mathrm{sec} /$ div and magnify to off. Read pos and neg peak voltages in the center of the screen. By pressing pos/neg trigger. Verify Vpp of 3.661 to 3.735 volts.
$x$. Change 3325 A function to triangle (frequency will go to 10 kHz ). Set CRO main sweep to $5 \mu \mathrm{sec} / \mathrm{div}$ and press magnify. Verify Vpp of 3.513 to 3.883 volts.
y. Change 3325A function to pos ramp. Set cro mann sweep to $20 \mu \mathrm{sec} / \mathrm{div}$. Adjust delay to set end of intensified spot on highest peak. Verify Vpp of 3.328 to 3.996 volts.
z. Change 3325A function to neg ramp. Verify Vpp of 3.328 to 3.996 volts.
aa. Change 3325A amplitude to $3 \mathrm{Vp}-\mathrm{p}$, and remove the voltage divider from the circuit. Reconnect the 3325 A signal output to the oscilloscope and voltmeter through the 50 ohm feedthru termination. Set the 3325A frequency to 99.9 Hz and the function to square.
bb. Repeat tests i through z. New test limits are as follows:

Test	Frequency	Function	Minimum	Maximum
m	99.9 Hz	Square	2.970 V	3.030 V
o	99.9 Hz	Triangle	2.955 V	3.045 V
q	99.9 Hz	Pos Ramp	2.955 V	3.045 V
r	99.9 Hz	Neg Ramp	2.955 V	3.045 V
s	1 kHz	Square	2.970 V	3.030 V
t	2 kHz	Triangle	2.955 V	3.045 V
u	500 Hz	Pos Ramp	2.955 V	3.045 V
v	500 Hz	Neg Ramp	2.955 V	3.045 V
w	100 kHz	Squarc	2.970 V	3.030 V
x	10 kHz	Triangle	2.850 V	3.150 V
y	10 kHz	Pos Ramp	2.700 V	3.300 V
z	10 kHz	Neg Ramp	2.700 V	3.300 V

cc. Change 3325A amplitude to 1 Vpp , and set dc offset to 1 mV . Set frequency to 99.9 Hz and function to square. Set CRO vertical sensitivity to .05 volts/div for all 1 Vpp tests.
dd. Repeat tests i through z. New test limits are as follows:

Test	Frequency	Function	Minimum	Maximum
m	99.9 Hz	Square	.970	1.030
0	99.9 Hz	Triangle	.960	1.040
q	99.9 Hz	Pos Ramp	.960	1.040
r	99.9 Hz	Neg Ramp	.960	1.040
s	1 kHz	Square	.970	1.030
t	2 kHz	Triangle	.960	1.040
u	500 Hz	Pos Ramp	.960	1.040
v	500 Hz	Neg Ramp	.960	1.040
w	100 kHz	Square	.970	1.030
x	10 kHz	Triangle	.940	1.060
y	10 kHz	Pos Ramp	.890	1.110
z	10 kHz	Neg Ramp	.890	1.110

## High Voltage Output Amplitude Accuracy For Frequencies To 100 kHz <br> (For Instruments with High Voltage Option 002)

ee. Sine Wave Test. Connect 3325A signal output to the AC voltmeter via a 6 ft . cable. Connect a $500 \Omega, 300$ pF load (at either end) in parallel with the line.
ff. Press the 3325 high voltage key near the 3325A output connector. A LED in the key indicates that the high voltage output is on.
gg. Set 3325A function to sine, frequency to 2 kHz , and amplitude to $14.14 \mathrm{~V}_{\mathrm{RMS}}(40 \mathrm{Vpp})$. Press AMPTD CAL key. The AC voltmeter reading should be 13.86 to $14.42 \mathrm{~V}_{\mathrm{RMS}}$.
hh. High Voltage Function Test. Connect 3325A signal output to CRO and voltage divider via a 6 ft . cable. Trigger CRO on 3325A sync output. Trigger high speed DC voltmeter on delayed sweep gate from CRO See Figure 4-9B.
ii. The voltage divider shown in Figure $4-9 \mathrm{~B}$ is built into a smali metal box with 2 BNC connectors. Parts used are:
R3, 443 ohm, consists of 3 parallel 1330 ohm resistors, each $0.1 \%, 0.25$ watt, -hp- Part Number 0698-7453
R4, 43 ohm, $0.1 \%, 0.125$ watt, -hp- Part No. 0698-8264 Cl, $300 \mathrm{pF}, 5 \%$, -hp- Part Number 0160-2207
Connect the tap to the input of high speed $D C$ voltmeter as shown in Figure 4-9B.
jj. Set 3325A frequency to 2 kHz and amplitude to 40 Vpp. Set DC voltmeter to IV range and ext trigger. Set oscilloscope as follows:

Vertical Sensitivity	2 volts/div
Vertical Position	$8 o^{\prime}$ 'clock
Trigger	Ext
Main Sweep	$20 \mu \mathrm{sec} / \mathrm{div}$
Delayed Sweep	$.05 \mu \mathrm{sec} / \mathrm{div}$
Delay	615
Magnify	X 10

kk. Set 3325A to square wave and read positive peak on DC voltmeter. Switch CRO to neg trigger, take vertical position to 4 o'clock, and read neg peak. Verify that peak to peak voltage is between 3.466 and 3.607 volts.
11. Change 3325A function to triangle, and read peak voltages. Vpp should be 3.466 to 3.607 volts.
mm . Change 3325A to pos ramp, Change CRO main sweep to $.1 \mathrm{msec} / \mathrm{div}$ and delay to 500 . Verify Vpp of 3.466 to 3.607 volts. Repeat for neg ramp by changing CRO trigger to pos.

Amplitude Flatness: (Frequencies above $100 \mathbf{~ k H z}$ )
nn. Set the 3325A as follows:
High Voltage Output (Option 2)
Function
Frequency
Amplitude
oo. Set the $50 \Omega$ attenuator (-hp- Model 355C) to 3 dB and connect to signal output. Connect $1 \mathrm{~V}_{\mathrm{RMS}}$ thermal converter (-hp-11050A) to attenuator output. Connect DC digital voltmeter with microvolt resolution (-hp3455A) to thermal converter output. See Figure 4-9C.
pp. Press 3325A AMPTD CAL key. Record the voltmeter reading in the 3 V sine wave 1 kHz reference space on the performance test record.
qq. Set the 3325A modify key to the 1 MHz position and bump the frequency in 2 MHz steps from 1 kHz to 20.001 MHz , recording the voltmeter reading at each frequency. In each case, allow the thermal converter several seconds to stabilize.
rr. Verify that all flatness readings are within $\pm$ $6.6 \%$ of the 1 kHz reference reading.
ss. Change attenuator to 12 dB . Change 3325A amplitude to 10 Vpp . Repeat steps pp and qq for 10 Vpp. Verify that all readings are within $6.3 \%$ of the 1 kHz reference.
tt . Disconnect the thermal converter from the 3325A output.
uu. Square wave flatness. Set the 3325A as follows: High Voltage Output (Option 2) OFF Function Square Amplitude 10 Vpp Frequency $\quad 1 \mathrm{kHz}$
vv. Connect the 3325A signal output to an oscilloscope (-hp- 1740A) with a 502 load. Set the oscilloscope as follows:

Vertical Sensitivity	2 volts/div
Time/Div	.1 msec

ww. Use the modify keys to bump the 3325 A frequency from 1 kHz to 10.001 MHz in 2 MHz steps. Two lines will appear on the oscilloscope. Verify that they remain within $1 / 2$ major division of 5 divisions apart for all 11 frequencies.

## xx. High Voltage (Option 2) Amplitude Flatness above 100 kHz .

yy. Connect the 3325A output to an oscilloscope (-hp-1740A) with a 500 n, 500 pF load (load attached at either end). Cable capacitance ( $30 \mathrm{pF} /$ foot) must be included in the 500 pF . The HV divider (Figure 4-9B) may be used with 6 feet of cable.
zz. Set the oscilloscope as follows:
Vertical Sensitivity
Time/Div
10 volts/div
1 msec
aaa. Set the 3325A to 40 Vpp sine wave (HV option on) and 1 kHz . Adjust oscilloscope intensity and focus for a sharp trace.
bbb. Use the modify keys to bump the 3325A frequency from 1 kHz to 1.001 MHz in 200 kHz steps. Verify that the width of the bright region of the screen is $4 \pm .4$ divisions for all 11 frequencies.

## 4-61. DC Offset Accuracy (DC Only).

4-62. This procedure tests the dc offset accuracy when no ac function output is present. The de only specification in Table 1-1 is:

$$
\pm 0.4 \% \text { of full range* }
$$

* Except lowest attenuator range where accuracy is $\pm 20 \mu \mathrm{~V}$
Equipment Required:
DC digital voltmeter with 5 -digit resolution, capable of measuring $>20 \mathrm{~V}$ for High Voltage Output Option 002 (-hp- Model 3455A)
50 -ohm Feedthru termination (-hp- Model 11048C)
a. Connect the 3325 A signal output through the 50 -ohm feedthru termination to the dc digital voltmeter input (see Figure 4-11(A)).
b. Press whichever function key is presently active, indicated by a lighted indicator in the center of the key. This removes the ac output. The indicator in the center of the "DC OFFSET" entry key should light.
c. Set the 3325 A dc offset to 5 V , then press the "AMPTD CAL" key.
d. The de digital voltmeter reading should be +4.980 to +5.020 V .
e. Change 3325 A dc offset to -5 V . Digital voltmeter reading should be -4.980 to -5.020 V .


## Attenuator Test

f. Set the dc offset to the positive and negative voltages shown below. The digital voltmeter reading should be within the tolerances shown for each voltage.

$$
\begin{array}{cc}
\text { DC Offset } & \text { Tolerances } \\
& \\
\pm 1.499 \mathrm{~V} & \pm 1.49300 \text { to } 1.50499 \mathrm{~V} \\
\pm 499.9 \mathrm{mV} & \pm 0.49790 \text { to } 0.50190 \mathrm{~V} \\
\pm 149.9 \mathrm{mV} & \pm 0.14930 \text { to } 0.15050 \mathrm{~V} \\
\pm 49.99 \mathrm{mV} & \pm 0.04979 \text { to } 0.05019 \mathrm{~V} \\
\pm 14.99 \mathrm{mV} & \pm 0.01493 \text { to } 0.01505 \mathrm{~V} \\
\pm 4.999 \mathrm{mV} & \pm 0.004979 \text { to } 0.005019 \mathrm{~V} \\
\pm 1.499 \mathrm{mV} & \pm 0.001479 \text { to } 0.001519 \mathrm{~V}
\end{array}
$$



Figure 4.9. Amplitude Accuracy and Flatness.

## High Voltage Output Option 002 DC Offset

g. Remove the 50 -ohm feedthru and connect the 3325A output directly to the digital voltmeter input.
h. Press the "SIGNAL" key in the lower right corner of the 3325A front pancl to select High Voltage Output (Option 002). Lighted indicator in the center of this key indicates High Voltage Output is on.
i. Set 3325 A de offset to 20 V . Digital voltmeter reading should be +19.775 V to 20.225 V .
j. Set 3325 A dc offset to -20 V . Digital voltmeter reading should be -19.775 V to -20.225 V .

### 4.63. DC Offset Accuracy with AC Functions.

4-64. The specifications for DC Offset accuracy with AC Functions given in Table 1-1 are as follows:

$$
\begin{aligned}
& \mathrm{DC}+\mathrm{AC}, \leq 1 \mathrm{MHz}: \pm 1.2 \%, \text { Ramps } \pm 2.4 \% \\
& \mathrm{DC}+\mathrm{AC},>1 \mathrm{MHz}: \pm 3 \%
\end{aligned}
$$

## Equipment Required:

DC Digital voltmeter (-hp- Model 3455A)
50-ohm feedthru termination (-hp- Model 11048C)
a. Connect the equipment as shown in Figure 4-10 A. Set the digital voltmeter to measure dc voltage.
b. Set the 3325A output as follows:

High Voltage Output (Option 002) . . . . Off
Function . . . . . . . . . . . . . . . . . . . . . . . . Sine
Frequency . . . . . . . . . . 20.999999999 MHz
Amplitude . . . . . . . . . . . . . . . . . . . . . . . V V p p
DC Offset ............................ +4.5 V
c. Press AMPTD CAL key. After amplitude calibration (approximately 2 seconds) the digital voltmeter reading should be +4.350 to +4.650 V dc .
d. Change the dc offset to -4.5 V . Digital voltmeter reading should be -4.350 to -4.650 V de.
e. Change the 3325 A frequency to 999.9 kHz . The digital voltmeter reading should be -4.440 to -4.560 V de.
f. Change the 3325 A dc offset to (+) 4.5 V . The digital voltmeter reading should be +4.440 to +4.560 V de.
g. Set the 3325A function to Square. The digital voltmeter reading should be +4.440 to +4.560 V de.
h. Change the 3325A dc offset to -4.5 V . The digital voltmeter reading should be -4.440 to -4.560 V dc.
i. Change the 3325 A frequency to 9.9999 MHz . The digital voltmeter reading should be -4.350 to $\mathbf{- 4 . 6 5 0}$ V.
j. Set the 3325A function to Triangle, frequency to 9.9 kHz . The digital voltmeter reading should be -4.440 to -4.560 V .
k. Set the 3325A function to + Ramp. The digital voltmeter reading should be -4.380 to -4.620 V .

## 4-65. Triangle Linearity,

4-66. This procedure tests the linearity of the triangle wave output against the specification in Table 1-1:
$\pm 0.05 \%$ of full output, $10 \%$ to $90 \%$, best fit straight line

Because the triangle and ramp outputs are generated by the same circuits, this procedure effectively tests the ramp linearity also.

## Equipment Required:

High-speed de digital voltmeter (This procedure is written to use the high speed and delay capabilities of the -hp- Model 3437A)
Resistive divider, $\div 2.5$, consisting of:
30 ohms $\pm 1 \%$ 1/4W (-hp- Part No. 0698-7533)
20 ohms $\pm 1 \% 1 / 4 \mathrm{~W}$ (-hp- Part No. 0698-6296)
BNC-to-Triax adapter (-hp- Part No. 1250-0595 or Model 11172A RF Cable)
a. Connect the 3325A and the high-speed digital voltmeter through the divider as shown in Figure 4-10B.
b. Set the 3325 A as follows:

> High Voltage Output (Option 002) . . . . . Off Function . . . . . . . . . . . . . . . . . . . . Triangle Frequency . . . . . . . . . . . . . . . . . . . . 10 VHz Amplitude
c. Set the digital voltmeter as follows:

Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Number of Reaciings . . . . . . . . . . . . . . . . .

## NOTE

The Model 3437 A triggers on the negative. going edge of the 3325 A sync square wave.
d. Set the digital voltmeter delay to, 00003 (seconds). Record the digital voltmeter reading on the Performance Test Record under "Positive Slope Measurement, $(10 \%)$ y ${ }_{1}$ ". This is the $10 \%$ point on the positive slope of the triangle. See Figure 4-11.


Figure 4.10. Triangle and Ramp Linearity Test.
e. Measure the voltage at each $10 \%$ segment point by setting the digital voltmeter delay to the following. Enter on the Performance Test Record in the appropriate spaces under "Positive Slope Measurement."

Delay	Percent of Slope
.000035	20
.00004	30
.000045	40
.00005	50
.000055	60
.00006	70
.000065	80
.00007	90

f. Measure the voltage at each $10 \%$ segment point on the negative slope by setting the digital voltmeter delay to the following. Enter the readings on the Performance Test Record in the appropriate spaces under "Negative Slope Measurement."

Delay	Percent of Slope
.00008	90
.000085	80
.00009	70
.000095	60
.0001	50
.000105	40
.00011	30
.000115	20
.00012	10

g. Algebraically add the voltages recorded in the "Positive Slope Measurement" column and enter the total in the " $\Sigma y$ " space.
h. Multiply $\Sigma$ y by 45 (which is $\Sigma$ x) and enter the result in the " $\Sigma x \Sigma y$ " space.
i. Multiply each $y$ value by the corresponding $x$ value and enter in the " $x$ times $y$ " column. Total these values and enter in the " $\Sigma x y$ " space.


Figure 4-11. Triangle Linearity Test.
j. The equation for determining the "best fit straight line" specification for each $y$ value is:

$$
y=a_{1} x+a_{0}
$$

Where: $a_{1}$ and $a_{0}$ are constants to be calculated from data taken previously.

## NOTE

Calculate the values of $a_{1}$ and $a_{0}$ to at least five decimal places.
k. First determine the value of $a_{1} u s i n g$ the following equation:

$$
a_{1}=\frac{\Sigma x y-\frac{\Sigma x \Sigma y}{n}}{\Sigma x^{2}-\frac{(\Sigma x)^{2}}{n}}
$$

Where: $\Sigma x, \Sigma y, \Sigma x y, \Sigma x \Sigma y, \Sigma z^{2}$, and $(\Sigma x)^{2}$ are the previously calculated values entered on the Performance Test Record.
$n=9$ (the number of points to be calculated)

1. Determine the value of $\mathrm{a}_{0}$ using the equation:

$$
a_{0}=\frac{\Sigma y}{n}-a_{1} \frac{\Sigma x}{n}
$$

m. Calculate the "Best Fit Straight Line" value for each point ( $y_{1}$ through $y_{9}$ ) using the equation:

$$
y=a_{1} x+a_{0}
$$

Enter each result on the Performance Test Record in the
"Best Fit \$traight Line" column.
n. Determine the minimum and maximum allowable voltages at each point by subtracting and adding 0.002 V to the voltages calculated in Step $\mathrm{m}(10 \mathrm{~V} \div 2.5 \times 0.05$ \%). Enter these voltage limits on the Performance Test Record under "Minimum" and "Maximum". The voltages measured and recorded in the "Positive Slope Measurement" column should be within these calculated tolerances.
o. Algebraically add the voltages recorded in the "Negative Slope Measurement" column and enter the total in the " $\Sigma \mathrm{y}$ " space.
p. Repeat Steps $h$ through n to determine the "Best Fit Straight Line" values and tolerances for the negative slope. The voltages measured and recorded in the "Negative Slope Measurement" column should be within the calculated tolerances.

## 4-67. $X$ Drive Linearity.

4-68. This procedure tests the tinearity of the rear panel X Drive output to the specification in Table 1-1: for all linear sweep widths which are integral multiples of the minimum sweep width for each function and sweep time:
$\pm 0.1 \%$ of final value, $10 \%$ to $90 \%$, best fit straight line.

Equipment Required:
High-speed dc digital voltmeter (This procedure is written to use the high speed and delay capabilities of the -hp- Model 3437A)
Resistive divider, $\div-2.6$, consisting of: 100k $1 \%$ 1/8W (-hp- Part No. 0757-0465) 162k $1 \%$ 1/8W (-hp- Part No. 0757-0470)
DC power supply (-hp- MOdel 6214A)
BNC-to-Triax adapter (-hp- Part No. 1250-0595 Model 11172A RF Cable)
a. Connect the equipment as shown in Figure 4-12.
b. Set the 3325A as follows:

High Voltage Output (	Off
Function	Sine
Amplitude	10 V p-p
\$weep Start Frequency	1 MHz
Sweep Stop Frequency	10 MHz
Sweep Marker Frequency	4 MHz
Sweep Time	0.01

c. Press 3325 A START CONT key.
d. Set the digital voltmeter as follows:

Range. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 V
Number of Readings . . . . . . . . . . . . . . . . . 1 .
NOTE
The model 3437 A triggers on the negative going edge of the $Z$ Blank signal, which occurs at the start of a sweep up.
e. Set the digital voltmeter delay to .001 (seconds). Adjust the dc power supply for a digital voltmeter reading of -1.600 V . Record the digital voltmeter reading on the Performance Test Record under " X Drive Ramp Measurement, ( $10 \%$ ), $\mathrm{y}_{1}$." This is the $10 \%$ point on the $X$ Drive ramp. See Figure 4-13.
f. Measure the voltage at each $10 \%$ segment point by setting the digital voltmeter delay to the following. Enter on the Performance Test Record in the appropriate spaces under "X Drive Ramp Measurement".

Delay	Percent of Ramp
.002	20
.003	30
.004	40
.005	50
.006	60
.007	70
.008	80
.009	90

g. Algebraically add the voltages recorded in the " X Drive Ramp Measurement" column and enter the total in the " $\Sigma y$ " space.
h. Multiply $\Sigma$ y by 45 (which is $\Sigma x$ ) and enter the result in the " $\Sigma x \Sigma y$ " space.
i. Multiply each $y$ value by the corresponding $x$ value and enter in the " $x$ times $y$ " column. Total these values and enter in the " $\Sigma x y$ " space.
j. The equation for determining the "best fit straight line" specification for each $y$ value is:

$$
y=a_{1} x+a_{0}
$$

Where: $a_{1}$ and $a_{0}$ are constants to be calculated from data taken previously.

## NOTE

Calculate the values of $a_{1}$ and $a_{0}$ to at least five decimal places.
k. First determine the value of $a_{1}$ using the following equation:


Where: $\Sigma \mathrm{x}, \Sigma \mathrm{y}, \Sigma_{\mathrm{xy}}, \Sigma \mathrm{x} \Sigma \mathrm{y}, \Sigma \mathrm{z}^{2}$, and $(\Sigma \mathrm{x})^{2}$ are the previously calculated values entered on the Performance Test Record.
$\mathrm{n}=9$ (the number of points to be calculated)

1. Determine the value of $a_{0}$ using the equation:

$$
a_{0}=\frac{\Sigma y}{n}-a_{1} \frac{\Sigma x}{n}
$$

m. Calculate the "Best Fit Straight Line" value for each point ( $y_{1}$ through $y_{9}$ ) using the equation:

$$
y=a_{1} x+a_{0}
$$

Enter each result on the Performance Test Record in the "Best Fit Straight Line" column.


Figure 4-12. $X$ Drive Linearity Test.
n. Determine the minimum and maximum allowable voltages at each point by subtracting and adding 0.004 V to the voltages calculated in \$tep $\mathrm{m}(10.5 \mathrm{~V} \div 2.6 \mathrm{x}$ $0.1 \%$ ). Enter these voltage limits on the Performance Test Record under "Minimum" and "Maximum". The voltages measured and recorded in the "X Drive Ramp Measurement" column should be within these calculated tolerances.

## NOTE

The 3325A $X$ Drive maximum voltage (100\%) is set at the factory to +10.5 V. .

### 4.69. Ramp Period Variation.

4-70. This procedure tests the variation between alternate cycles of the positive and negative slope ramps to the specification in Table 1-1: < $\pm 1 \%$ of period, maximum.

Equipment Required: Oscilloscope, with delayed sweep (-hp- Model 1740A)
a. Connect 3325A signal output to the oscilloscope vertical input. (Do NOT use a $10: 1$ probe.) If the oscilloscope is an -hp- Model 1740A, set the input switch to the 50 -ohm position, If your oscilloscope doesnot have a 50 -ohm input, use a 50 -ohm load (-hpModel 11048C 50-ohm Feedthru Termination) at the input.
b. Set the 3325A as follows:

$$
\begin{aligned}
& \text { Function. . . . . . . . . . . . . . . . . . . . . . . . . } 100 \mathrm{~Hz} \text { Hz } \\
& \text { Frequency . . . . . . . . . . . . . . . } 10 \text { V-p } \\
& \text { Amplitude. . . . . . . . . }
\end{aligned}
$$

c. Set the oscilloscope as follows:

$$
\begin{aligned}
& \text { Vertical . . . . . . . . . . . . . . . . . . . . . . . . . . . } 2.0 \mathrm{~ms} / \mathrm{m} / \mathrm{div} \\
& \text { Main sweep. . . . . . . . . . . . . . . } 20 ~ \mu \mathrm{~s} / \mathrm{div} \\
& \text { Delayed sweep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }
\end{aligned}
$$

d. With oscilloscope horizontal controls set to main sweep, adjust the intensified portion of the trace to the reset (positive going) portion of the ramp.
e. Set the horizontal controls to delayed sweep and position the ramp reset portion near the center of the display.
f. The reset portion should show more than one line, as in Figure 4-14. The lines should not be separated by more than ten divisions on the display.
g. Change the 3325 A function to positive slope ramp and set oscilloscope trigger to negative to verify the positive ramp.
h. Bump the 3325 A frequency to 99.999999 Hz to check the low frequency ramps. Verify that ramp period variations do not exceed ten divisions.


Figure 4.13. X Drive Linearity Test.

### 4.71. HP.IB Interface Test.

4-72. The following calculator program tests the operation of the 3325A HP-IB interface circuits. The program is written for an -hp- Model 9825A calculator but may be adapted for other controllers. The program is printed on a foldout page for your convenience.

## Equipment Required:

-hp- Model 9825A Calculator equipped with:
98034A HP-IB Interface (set the select code 7)
Any combination of ROM's that includes a General I/O ROM and an Extended I/O ROM
a. Connect the calculator interface cable to the 3325A rear panel HP-IB connector. It is recommended that no other equipment be connected to this HP-IB during this test.
b. Enter the program into the calculator.
c. Press RUN. Tests 4 through 7 in this program require the operator to press CONTINUE if the test passes, or 1 CONTINUE if the test fails. If the Test 4 question (SRQ LIGHT ON?, $1=\mathrm{NO}$ ) does not appear in the calculator display within 30 seconds after start of the program (RUN), the 3325A and calculator are not interfacing properly. The calculator may display an error indication that will identify the problem. If not, the 3325A HP-IB circuits are probably not operating correctly.


Figure 4-14. Ramp Reset Waveform,




```
"t!"今心"%"
```





```
i.f flosi=: %17+7
C1% H'M_Clear the 3325A to Turn-on State
```











```
 m| | |m Clear the 3325A
```











```
 "#"ET 4"*
```





```
 "TEET" ='",
```




```
 My Hy=% - Read from the 3325A
```
















Variables used in this Test Program:
A Address of 3325A (defaults to 717)
F Frequency read from 3325A in test \#1
G Frequency read from 3325A in test \#2
H Amplitude read from 3325A in test \#3
1 Counter used to print test results
r1-r7 Test results ( $0=$ Pass, $1=$ Fail)
S Status read from 3325A in test \#5

Samples of Program Printouts:


```
325#
HF-IE TEST
```




```
TEST RESILTE:
```

TEGT
1

FHSS
TEST
FASS
TEST
4
FHIL
TES
Frge
TET
FHES
TEST $\quad$ T
FHE
$4 \% 4 \% 4 \%-4 \% 4 \% 4$




```
```

3%引Н

```
```

3%引Н
HF-IE TEST

```
```

HF-IE TEST

```
```




```
```

\#% % % % % % % % % % % % % % %

```
```

\#% % % % % % % % % % % % % % %
TEST RESULTG:
TEST RESULTG:
TEST 1
TEST 1
FHS%
FHS%
TEST E
TEST E
FHGS
FHGS
TEST
TEST
%
%
FHGS
FHGS
TEST
TEST
FRSE
FRSE
FGT
FGT
FFGG
FFGG
TEST
TEST
FHEG
FHEG
TEST F
TEST F
FHSS

```
```

    FHSS
    ```
```


## OPERATIONAL VERIFICATION RECORD

Hewlett-Packard
Model 3325A
Synthesizer/Function Generator
Serial No.

Tested by $\qquad$
Date $\qquad$

| Par. 4-16 | Triangle and Ramp Verification |  |
| :---: | :---: | :---: |
| Step 0 | Trianglep Freq. and Amptd. | Passed |
| Step d | + Ramp Freq, and Amptd. | Passed |
| Step e | - Rampl Freq. and Amptd. | Passed |
| Step f | - Ramp Retrace Time | Passed |
| Step 9 | + Ramp Retrace Time | Passed |
| Step i | Triangle Linearity | Passed |
| Par. 4-18 | Amplitude Flatness | Passed |

Par. 4-10

Par. 4-12
Step d
Step g

Self Test

Sine Wave Verification
20 MHz : Frequency and Amplitude
Signal Purity
High Voltage Output ( 1 MHz )

Square Wave Verification
Frequency and Amplitude
Abberations
Rise Time

Triangle and Ramp Verification

Amplitude Flatness
Triangle Lineparity

Passed $\qquad$

| Par. $4 \times 14$ | Square Wave Verification |  |
| :--- | :--- | :--- |
| Step E | Frequency and Amplitude | Passed |
| Steps $d$ \& e | Abberations | Passed |
| Step $f$ | Rise Time | Passed |

## Spec

Par. 4-20
Sync Output Check
High_ $>+1.2 \mathrm{~V}$

| Par. 4-22 | Frequency Accuracy | \$pec. |
| :---: | :---: | :---: |
| Step c | Sine, 20 MHz | $\pm 100 \mathrm{~Hz}$ |
| Step d | Square, 10 MHz | $\pm 50 \mathrm{~Hz}$ |
| Stepe | Triangle, $10 \mathrm{kHz}(100,000 \mathrm{~ns})$ | $\pm .5 \mathrm{~ns}$ |
| Step $f$ | Ramp, $10 \mathrm{kHz}(100,000 \mathrm{~ns})$ | $\pm .5 \mathrm{~ns}$ |

## Operational Verification

Qutput Level and Attenuator Check
(DC Offset Only)

| Entry | Min. | Max. |
| :---: | :---: | :---: |
| -5 V | -4.980 V | $-5.020 \mathrm{~V}$ |
| $1+15 \mathrm{~V}$ | +4.980 V | +5.020 V |
| * ( $\pm$ ) 1.499 V | ( $\pm 1$ ) 1.49300 V | (土) 1.50499 V |
| 499.9 mV | +0.49790 V | +0.50190 V |
| 149.9 mV | +0.14930 V | +0.15050 V |
| 49.99 mV | +0.04979 V | $+0.05019 \mathrm{~V}$ |
| 14.99 mV | +0.01493 V | +0.01505 |
| 4.999 mV | +0.04979 V | +0.005019 V |
| 1.499 mV | +0.001479 V | +0.00151 |

* All entries and limits are $\pm$

High Voltage Output (Option 002)

| 20 V | $+19.775 \mathrm{~V} \ldots+20.225 \mathrm{~V}$ |
| :---: | :---: |
| -20 V | $-19.775 \mathrm{~V} \ldots-20.225 \mathrm{~V}$ |

$\qquad$
$\qquad$

## PERFORMANCE TEST RECORD

## Hewlett-Packard

Model 3325A
Synthesizer/Function Generator Serial No. $\qquad$
Tested By $\qquad$
Date $\qquad$

Par. 4-37
Harmonic Distortion
Fundamental Frequency
20 MHz
15 MHz
2 MHz
200 kHz
50 kHz
10 kHz
1 kHz
700 Hz

High Voltage Output (Option 002)

| 100 Hz |  |
| :--- | :--- |
| 10 kHz | -65 dB |
| 200 kHz | -65 dB |
| 1 MHz | -60 dB |

Par. 4-39 Spurious Signal Tests
Mixer Spurious Test (2:1 spur/3:2 spur) $\qquad$

|  | $2: 1$ spur | $3: 2$ spur |  |
| ---: | :---: | :---: | :---: |
| 4.100 MHz | - | - | -70 dB |
| 6.100 MHz | - | - | -70 dB |
| 8.100 MHz | - | - | -70 dB |
| 10.100 MHz | - | - | -70 dB |
| 12.100 MHz | - | - | -70 dB |
| 14.100 MHz | - | - | -70 dB |
| 16.100 MHz | - | - | -70 dB |
| 18.100 MHz | - | - | -70 dB |
| 20.100 MHz | - | - | -70 dB |

Close-in Spurious Test

| 5.0001 MHz |  | -70 dB |
| :--- | :--- | :--- |
| 5.00001 MHz | - | -70 dB |
| 5.000001 MHz | -70 dB |  |
| 20.001 MHz | - | -70 dB |
|  | - | -70 dB |
|  | - | -70 dB |
|  | - | -70 dB |

Par, 4-41 Integrated Phase Noise

$$
19.901 \mathrm{MHz}
$$

Par. 4-43 Amplitude Modulation Envelope Distortion
$\qquad$

Par. 4-45 Square Wave
Rise Time $\qquad$

Fall Time $\qquad$
Overshoot, Positive Peak $\qquad$ く500 mV

Overshoot, Negative Peak $\qquad$ $<500 \mathrm{mV}$

Par. 4.47 Ramp Retrace Time

$$
\begin{aligned}
& + \text { Ramp } \\
& \text { - Ramp }
\end{aligned}
$$

$\qquad$


Par. 4-49 $\quad \begin{gathered}\text { Syric O } \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{gathered}$ $\qquad$

Par. 4-51 Square Wave Symmetry $\qquad$ 33.2 ns

Par. 4-53
Frequency Accuracy
Sine, 20 MHz $\qquad$ $\pm 100 \mathrm{~Hz}$
Square, 10 MHz
Triangle, $10 \mathrm{kHz}(100,000 \mathrm{~ns})$

$\longrightarrow \pm$|  |
| :--- | :--- |

$\qquad$ $\pm .5 \mathrm{~ns}$
Ramp, $10 \mathrm{kHz}(100,000 \mathrm{~ns})$
_士. 5 ns

Par. 4.55
Phase Increment Accuracy

|  | Minimum | Time Difference | Maximum |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| $1^{\circ}$ Increment Time Interval | 22.22 ns |  | 33.34 ns |
| $10^{\circ}$ Increment Time Interval | 272.22 ns |  | 283.34 ns |
| $100^{\circ}$ \|ncrement time Interval | 2772.22 ns |  | 2783.34 ns |

Par, 4-57
Phase Modulation Linearity



Specification: $\pm 0.5 \%$ of $\left(y_{11}\right)= \pm$ $\qquad$。

## Amplitude Accuracy

| Entry | Minimum | Measured | Maximum |
| :---: | :---: | :---: | :---: |
| Sine Wave Test |  |  |  |
| Amplitude: 3.536 Vrms |  |  |  |
| Sine, 100 Hz | 3.495 V | - | 3.577 V |
| Sine, 1 kHz | 3.495 V |  | 3.577 V |
| Sine, 100 kHz | 3.495 V |  | 3.577 V |
| Amplitude: 1.061 Vrms |  |  |  |
| Sine, 100 Hz | 1.048 V | - | 1.073 V |
| Sine, 1 kHz | 1048 V |  | 1.073 V |
| Sine, 100 kHz | 1.048 V |  | 1.073 V |
| Amplitude: 0.3536 Vrms |  |  |  |
| $\mathrm{DC}, 1 \mathrm{mV}$ |  |  |  |
| Sine, 100 Hz | 0.3411 V | - | 0.3660 V |
| Sine, 1 kHz | 0.3411 V | - | 0.3660 V |
| Sine, 100 Hz | 0.3411 V | - | O.3660 V |
| Function Test |  |  |  |
| Amplitude:10 Vpp |  |  |  |
| Square, 99.9 Hz | 3.661 V | - | 3.735 V |
| Triangle, 99.9 Hz | 3.643 V |  | 3.754 V |
| Pos Ramp, 99.9 Hz | 3.643 V |  | 3.754 V |
| Neg famp, 99.9 Hz | 3.643 V |  | 3.754 V |
| Square, 1 kHz | 3.661 V |  | 3.735 V |


| Triangle, 2 kHz | 3.643 V | 3.754 V |
| :---: | :---: | :---: |
| Pos Ramp, 500 Hz | 3.643 V | 3.754 V |
| Neg Ramp, 500 Hz | 3.643 V | 3.754 V |
| Square, 100 kHz | 3.661 V | 3.735 V |
| Triangle, 10 kHz | 3.513 V | 3.883 V |
| Pos Ramp, 10 kHz | 3.328 V | 3.996 V |
| Neg Ramp, 10 kHz | 3.328 V | 3.996 V |
| Amplitude: 3 Vpp |  |  |
| Square, 99.9 Hz | 2.970 V | 3.030 V |
| Triangle, 99.9 Hz | 2.955 V | 3.045 V |
| Pos Ramp, 99.9 Hz | 2.955 V | 3.045 V |
| Neg Ramp, 99.9 Hz | 2.955 V | 3.045 V |
| Square, 1 kHz | 2.970 V | 3.030 V |
| Triangle, 2 kHz | 2.955 V | 3.045 V |
| Pos Ramp, 500 Hz | 2.955 V | 3.045 V |
| Neg Ramp, 500 Hz | 2.955 V | 3.045 V |
| Square, 100 kHz | 2.970 V | 3.030 V |
| Triangle, 10 kHz | 2.850 V | 3.150 V |
| Pos Ramp, 10 kHz | 2.700 V | 3.300 V |
| Neg Ramp, 10 kHz | 2.700 V | 3.300 V |
| Amplitude: $\uparrow \mathrm{Vpp}$ DC: 1 mV |  |  |
| Square, 99.9 Hz | 0.970 V | 1.030 V |
| Triangle, 99.9 Hz | 0.960 V | 1.040 V |
| Pos Ramp, 99.9 Hz | 0.960 V | 1.040 V |
| Neg Ramp, 99.9 Hz | 0.960 V | 1.040 V |
| Square, 1 kHz | 0.970 V | 1.030 V |
| Triangle, 2 kHz | 0.960 V | 1.040 V |
| Pos Ramp, 500 Hz | 0.960 V | 1.040 V |
| Neg Ramp, 500 Hz | 0.960 V | 1.040 V |
| Square, 100 kHz | 0.970 V | 1.030 V |
| Triangle, 10 kHz | 0.940 V | 1.060 V |
| Pos Ramp, 10 kHz | 0.890 V | 1.110 V |
| Neg Ramp, 10 kHz | 0.890 V | 1.110 V |

High Voltage (Option 002) Sinewave Test
Amplitude: 14.14 Vrms

$$
\text { Sine, } 2 \mathrm{kHz} \quad 13.86 \mathrm{~V} \quad 14.42 \mathrm{~V}
$$

High Voltage (Option 002) Function Test
Amplitude; 40 Vpp

| Square, 2 kHz | 3.466 V |  |  |
| ---: | :--- | :--- | :--- |
| Triangle, 2 kHz | 3.466 V |  |  |
| Pos Ramp, 2 kHz | 3.466 V |  | 3.607 V |
| Neg Ramp, 2 kHz | 3.466 V |  | 3.607 V |
|  |  |  | 3.607 V |
|  |  |  | 3.607 V |

Amplitude Flatness
Sine, 3 Vpp, 1 kHz (Reference)

$$
\ldots=Y
$$

Allowable tolerance

$$
( \pm 6.6 \%) \quad(0.934 \mathrm{Y})
$$


(1.066Y)
2.001 MHz
4.001 MHz $\qquad$
6.001 MHz
8.001 MHz $\qquad$
10.001 MHz
12.001 MHz
14.001 MHz
16.001 MHz $\qquad$
18.001 MHz $\qquad$
20.001 MHz $\qquad$
Sine, $10 \mathrm{Vpp}, 1 \mathrm{kHz}$
(Reference)
Allowatole tolerance
$( \pm 6.3 \%) \frac{(0.937 Y)}{}$
2.001 MHz
4.001 MHz
6.001 MHz
8.001 MHz
10.001 MHz
12.001 MH
14.001 MHz
16.001 MHz
18.001 MHz
20.001 MHz

Square, 10 Vpp .
Pass

(1.063Y)
$\qquad$
$\qquad$
$\qquad$
(check one)
$=Y$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
—...
$\qquad$
$\qquad$

High Voltage (Option 002) Flatness
Sine, 40 Vpp, $\qquad$ (check one)


DC Offset Accuracy (DC Only)

| Entry | Minimum | Maximum |
| :---: | :---: | :---: |
| 5 V | +4.980 V | س.. +5.020 V |
| -5V | -4.980 V | - -5.020 V |
| -1.499V | $-1.49300 \mathrm{~V}$ | -1.50499 V |
| 1.499 V | +1.49300 V | $\ldots+1.50499 \mathrm{~V}$ |
| 499.9 mV | +0.49790 V | $\ldots 0.50190 \mathrm{~V}$ |
| -499.9mV | -0.49790V | $-0.50190 \mathrm{~V}$ |
| - 149.9 mV | -0.14930 V | -0.15050 V |
| 149.9 mV | $+0.14930 \mathrm{~V}$ | +0.15050 V |
| 49.99 mV | +0.04979 V | +0.05019 V |
| -49.9 mV | -0.04979 V | _-0.05019 V |
| -14.99mV | -0.01493V | - 0.01505 V |
| 14.99 mV | +0.01493 V | $\ldots+0.01505 \mathrm{~V}$ |
| 4.999 mV | +0.004979V | $\ldots+0.005019 \mathrm{~V}$ |
| -4.999 mV | $-0.004979 \mathrm{~V}$ | --0.005019 V |
| $-1.499 \mathrm{mV}$ | $-0.001479 \mathrm{~V}$ | --0.001519 V |
| 1.499 mV | +0.001479V | +0.001519V |

High Voltage Output Option 002

$$
\begin{aligned}
& 20 \mathrm{~V}+19.775 \mathrm{~V} \\
&-20 \mathrm{~V}-19.775 \mathrm{~V} \longrightarrow+20.225 \mathrm{~V} \\
&-20.225 \mathrm{~V}
\end{aligned}
$$

Far, 4-63 DC Offset Accuracy with AC Functions

| Sine 20.999999999 MHz | Minimum | Maximum |
| :--- | :--- | ---: |
| 4.5 V | +4.350 V | +4.650 V |
| -4.5 V | -4.350 V | -4.650 V |

\$ine 999.9 kHz

$$
\begin{array}{cl}
-4.5 \mathrm{~V} & -4.440 \mathrm{~V} \\
4.5 \mathrm{~V} & +4.440 \mathrm{~V}
\end{array}
$$

## Square 999.9 kHz

$$
\begin{aligned}
& 4.5 \mathrm{~V} \\
& -4.5 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& +4.440 \mathrm{~V} _+4.560 \mathrm{~V} \\
& -4.440 \mathrm{~V} _-4.560 \mathrm{~V}
\end{aligned}
$$

## Square 9.9999 MHz

$$
-4.5 \mathrm{~V}
$$

$$
-4.350 \mathrm{~V}
$$

$\qquad$ $-4.650 \mathrm{~V}$

Triangle 9.9 kHz
$-4.5 \mathrm{~V}$

Ramp 9.9 kHz

$$
-4.5 \mathrm{~V}
$$

$-4.380 \mathrm{~V}$ $\qquad$ $-4.620 \mathrm{~V}$

Par. 4-65. Triangle Linearity

| $x$ Values | Positive Slope Measurement | $x$ times y | Calculated Best Fit \$traight Line | Minimum | nces <br> Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{x}_{\mathrm{T}}=1$ | $(10 \%) \mathrm{y}_{1}$ |  | $\left(y_{\dagger}\right)$ |  |  |
| $x_{2}=2$ | (20\%) $\mathrm{y}_{2}$ |  | $\left(\mathrm{Y}_{2}\right)$ |  |  |
| $x_{3}=3$ | $(30 \%) y_{3}$ |  | $\left(Y_{3}\right)$ |  |  |
| $\mathrm{x}_{4}=4$ | (40\%) $y_{4}$ |  | $\left(y_{4}\right)$ | - |  |
| $\mathrm{x}_{5}=5$ | (50\%) $\mathrm{y}_{5}$ |  | $\left(y_{5}\right)$ |  |  |
| $x_{6}=6$ | (60\%) $y_{6}$ |  | $\left(\mathrm{V}_{6}\right)$ |  |  |
| $x_{7}=7$ | $(70 \%) y_{7}$ | - | $\left(y_{7}\right)_{\text {- }}$ | $\cdots$ | manm |
| $\mathrm{x}_{8}=8$ | (80\%) $\mathrm{y}_{8}$ | - | ( $\mathrm{Y}_{\mathrm{g}}$ ) |  |  |
| $\mathrm{x}_{9}=9$ | $(90 \%) \mathrm{y}_{\mathrm{g}}$ | - | $\left(y_{9}\right)$ | - | -u-mur |
| $\Sigma x=45$ | $\Sigma y$ | $\Sigma \mathrm{Xy}$ |  |  |  |
| $(\Sigma \mathrm{X})^{2}=2025$ | ExEy |  |  |  |  |
| $\Sigma \mathrm{x}^{2}=285$ |  |  |  |  |  |

Par. 4-65. Triangle Linearity (Con'd)

Par. 4-65. Triangle Linearity

| $\times$ Values | Negative Slope Measurement | $x$ times y | Calculated Best Fit Straight Line | Minimum | nces Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{x}_{9}=9$ | $(90 \%) \mathrm{Yg}_{\mathrm{g}}$ | -" | $\left(y_{g}\right)$ |  |  |
| $x_{8}=8$ | $(80 \%) y_{8}$ |  | $\left(\mathrm{Y}_{8}\right)^{\text {_ }}$ | $\cdots$ |  |
| $x_{7}=7$ | (70\%) $\mathrm{y}_{7}$ |  | $\left(y_{7}\right)$ | -...."\%- |  |
| $\mathrm{x}_{6}=6$ | $(60 \%){ }^{6}$ |  | $\left(y_{6}\right)^{\prime}$ |  |  |
| $x_{5}= \pm 5$ | $(50 \%){ }_{5}$ | - | $\left(y_{5}\right)$ |  |  |
| $x_{4}=4$ | $(40 \%) Y_{4}$ | - | $\left(\mathrm{Y}_{4}\right)$ | " |  |
| $\mathrm{x}_{3}=3$ | $(30 \%) \mathrm{v}_{3}$ |  | $\left(y_{3}\right)$ | - |  |
| $\mathrm{x}_{2}=2$ | $(20 \%) \mathrm{V}_{2}$ | - | $\left(y_{2}\right)$ |  |  |
| $\mathrm{x}_{\mathrm{T}}=1$ |  |  | $\left(y_{\dagger}\right)$ | - |  |
| $\Sigma z=45$ | $\Sigma \gamma^{\prime}$ | Exy |  |  |  |
| $(\Sigma x)^{2}=2025$ |  |  |  |  |  |
| $\Sigma x^{2}=285$ |  |  |  |  |  |

Par. 4-67, x Drive Linearity

| $\times$ Values | Positive Slope Measurement | $x$ times y | Calculated Best Fit Straight Line | Minimum | ances Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{1}=1$ | $(10 \%) y_{1}$ | - | $\left(y_{1}\right)^{\prime} \ldots$ | - |  |
| $x_{2}=2$ | (20\%) $\mathrm{y}_{2}$ |  | $\left(y_{2}\right)^{\ldots}$ |  |  |
| $x_{3}=3$ | (30\%) $\mathrm{y}_{3}$ | - | $\left(y_{3}\right)$ | - |  |
| $\mathrm{x}_{4}=4$ | (40\%) $\mathrm{y}_{4}$ |  | $\left(y_{4}\right) \ldots \ldots$ | - |  |
| $x_{5}=5$ | (50\%) $\mathrm{y}_{5}$ |  | ( $\mathrm{Y}_{5}$ ) |  |  |
| $\mathrm{x}_{6}=6$ | (60\%) $\mathrm{Y}_{6}$ | " | $\left(y_{6}\right)^{\prime}$ |  |  |
| $\mathrm{x}_{7}=7$ | (70\%) $\mathrm{y}_{7}$ | - | ( $\mathrm{Y}_{7}$ ) |  |  |
| $\mathrm{x}_{8}=8$ | (80\%) $y_{8}$ |  | $\left(y_{8}\right)$ | - |  |
| $\mathrm{x}_{9}=9$ | (90\%) $\mathrm{Y}_{9}$ |  | $\left(\mathrm{Y}_{9}\right)$ |  |  |
| $\Sigma z=45$ | $\Sigma \Sigma^{\prime}$ | $\Sigma \mathrm{xy}$ |  |  |  |
| $(\Sigma \mathrm{x})^{2}=2025$ | $\Sigma \times \Sigma \mathrm{Y} \longrightarrow$ |  |  |  |  |
| $\Sigma \mathrm{x}^{2}=285$ |  |  |  |  |  |

## Par. 4-69 Ramp Period Variation

Negative Slope Ramp, 100 Hz $\qquad$ $< \pm 100 \mu 5$

Positive Slope Ramp, 100 Hz $\qquad$ < $4100 \mu$
Positive Slope Ramp, 99.9 Hz $\qquad$

Par. 4-71. HP-lB Interface

|  | Pass | Fail | or Attach Calculator Tape |
| :---: | :---: | :---: | :---: |
| Test 1 |  |  |  |
| Test 2 |  |  |  |
| Test 3 |  |  |  |
| Test 4 |  | - |  |
| Test 5 |  |  |  |
| Test 6 |  |  |  |
| Test 7 |  |  |  |

## WARNING

Maintenance described herein is performed with power supplied to the instrument, and protective covers removed. Such maintenance should be performed only by service-trained personnel who are aware of the hazards involved (for example, fire and electrical shock). Where maintenance can be performed without power applied, the power should be removed.

## SECTION V <br> ADJUSTMENTS

## 5-1. INTRODUCTION.

5-2. This section contains the procedures required to adjust the 3325A to meet its specifications in Table 1-1. These adjustments should be used following repairs or if performance tests indicate a deficiency.

| Paragraph | Adjustment |
| :---: | :--- |
| $5-7$ | Power Supply |
| $5-8$ | D/A Converter Offset |
| $5-9$ | Voltage Controlled Oscillator Frequency |

$5-10$
5-11

5-14 X Drive

5-17
5-18

5-12 Option 001 High Stability Frequency Reference
5-13 Sinewave Amplitude Calibration
5-15 Amplifier Bias
5-16 Ramp Stability
Analog Phase Interpolation (API)
30 MHz Reference Oscillator

Amplitude Flatness
Mixer Spurious Signal

Table 5.1. Test Equipment Required for Adjustments

| Equipment | Critical \$pecifications | Recommended Model |
| :---: | :---: | :---: |
| AC/DC Digital Voltmeter | AC Function: <br> 1 V Range <br> Accuracy; $\pm .5 \%$ <br> Repolution: 4 digits <br> DC Function: <br> Ranges: . $1 \mathrm{~V}, 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$ <br> Accuracy: $\pm .2 \%$ <br> Repolution: $41 / 2$ digits | -hp-3455A/3466A |
| Low Frequency Spectrum Aralyzer | Frequency Range: $1 \mathrm{kHz}-50 \mathrm{kHz}$ Amplitude Accuracy: $\pm 0.5 \mathrm{~dB}$ Spurious Responses: 80 dB below ref. | -hp-3580A/3585A |
| Resistor | $1 \mathrm{k} \Omega$ | -hp-Part No. 0683-1025 |
| Electronic Counter | Frequency measurement: to 20 MHz Accuracy: $\pm 2$ counts <br> Resolution: 8 digits | $\begin{aligned} & \text {-hp-5328A } \\ & \text { with Opt. } 040 \text { or } 041 \end{aligned}$ |
| Oscilloscope | Vertical: <br> 2 channel <br> Bandwidth: de to 100 MHz <br> Deflection: 5 mV to $10 \mathrm{~V} / \mathrm{div}$ <br> Horizontal: <br> Main and Delayed Sweeps <br> Main: 50 ns to $2 \mathrm{~s} / \mathrm{div}$ <br> Delayed: 50 ns to $20 \mathrm{~ms} / \mathrm{div}$ | -hp-1740A |
| Frequency Standard (for Option 001 only) | Frequency: 5 MHz <br> Accuracy: $1 \times 10^{-5}$ | -hp-105B |
| 10:1 Oscilloscope Probe | Impedance: $1 \mathrm{M} 9,12 \mathrm{pF}$ | -hp-10041A |
| DC Power Supply | Volts: 0-10V <br> Amps: 10 mA | -hp-6214A |
| Oscillator | Frequency: 1 kHz <br> Amplitude: 1 Vrms | -hp-204C |
| High Frequency Spectrum Analyzer | Frequency Range: $1 \mathrm{kHz}-80 \mathrm{MHz}$ Arnplitude Accuracy: $\pm .5 \mathrm{~dB}$ | -hp-141T/8552B/8553B/ 8566A/8568А |
| Thermal Converter | Input Impedance: 508, Input Voltage: 1 Vrms , Frequency; 1 kHz to 20 MHz , Frequency Response: $\pm 0.05 \mathrm{~dB}$ | -hp-11050A |
| Resistor | $20021 \% 1 / 8 \mathrm{~W}$ | -hp-0757-0407 |
| Resistor | 50 n 1\% 0.5W | Ahp-0698-5965 |
| Resistor | $1301 \% 1 / 8 W$ | -hp-0757-0380 |
| Resistor | 25@ 5\% 1/4W | -hp. 0683-2505 |
| Resistor | 150n 1\% 1/8W | -hp-0757-0284 |

Table 6-1. List of Abbreviations.


Table 6-2. List of Manufacturers.

| Mfr. <br> No. | Manufacturer Name |  |
| :---: | :--- | :--- |
| S0545 | Nippon Electric Co. | Address |
| 00000 | Any Satisfactory Supplier | Tokyo, JP |
| 00494 | Addressograph Multigraph Corp. | Cleveland, OH 44117 |
| 01121 | Allen-Bradley Co. | Milwauke, WI 53204 |
| 01295 | Texas Instr Inc. Semicond Cmpnt Div. | Dallas, TX 75222 |
| 03888 | KDI Pyrofilm Corp. | Whippany, NJ 07981 |
| 04713 | Motorola Semiconductor Products | Phoenix, AZ 85008 |
| 06383 | Panduit Corp. | Tinley Park, IL 60477 |
| 07263 | Fairchild Semiconductor Div. | Mountain View, CA 94042 |
| 13606 | Sprague Elect Co. Semiconductor Div. | Concord, NH 03301 |
| 18324 | Signetics Corp. | Sunnyvale, CA 94086 |
| 19701 | Mepco/Electra Corp. | Mineral Wells, TX 76067 |
| 24546 | Corning Glass Works (Bradford) | Bradford, PA 16701 |
| 26654 | Varadyne Inc. | Santa Monica, CA 94040 |
| 27014 | National Semiconductor Corp. | Santa Clara, CA 95051 |
| 28480 | Hewlett-Packard Co. Corporate Hq. | Palo Alto, CA 94304 |
| $3 L 585$ | RCA Corp. Solid State Div. | Somerville, NJ |
| 32293 | Intersil Inc. | Cupertino, CA 95014 |
| 32997 | Bourns Inc. Trimpot Prod Div. | Riverside, CA 92507 |
| 34335 | Advanced Micro Devices Inc. | Sunnyvale, CA 94086 |
| 51642 | Centre Engineering Inc. | State College, PA 16801 |
| 52763 | Stettner Electronics Inc. | Chattanooga, TN 13035 |
| 55576 | Synertek | Santa Clara, CA 95051 |
| 56289 | Sprague Electric Co. | North Adams, MA 01247 |
| 72136 | Electro Motive Corp. | Florence, SC 06226 |
| 74970 | Johnson E F Co. | Waseca, MN 56093 |
| 75042 | TRW Inc. Philadelphia Div. | Philadelphia, PA 19108 |
| 75915 | Littelfuse Inc. | Des Plaines, IL 60016 |
| 84411 | TRW Capacitor Div. | Ogalala, NE 69153 |
| 91637 | Dale Electronics Inc. |  |
|  |  |  |
|  |  |  |

c. Set spectrum analyzer controls as follows:

| Start Frequency | 0 kHz |
| :---: | :---: |
| Bandwidth | 30 Hz |
| Frequency Span. | $1 \mathrm{kHz} /$ div |
| Display Smoothing | Max |
| Sweep Time/Div | 200 sec |
| Input Sensitivity. | 10 mV |
| Amplitude Reference | Normal |
| Amplitude Mode | $10 \mathrm{~dB} / \mathrm{div}$ |
| Sweep Mode. | Manua |

d. Adjust the spectrum analyzer manual vernier control to place the display marker at the peak of the API spur which appears at $3 \mathrm{kH} \%$ ( 3 display divisions).
e. Adjust the API 1 Adj (A21R76) to reduce the spur to a minimum.
f. Change 3325 A frequency to 5000300 Hz .
g. Adjust API 2 Adj (A21R74) to again reduce the spur on the spectrum analyzer display to a minimum.
h. Change 3325 A frequency to 5000003 Hz .
i. Adjust API 4 Adj (A21R88) to reduce the spur to a minimum.
j. Set the 3325 A to 5.003 MHz and readjust API 1 (A21R76) to its minimum value. Also check the harmonic distortion performance test (paragraph 4-38, steps e through h).

### 5.11. 30 MHz Reference Oscillator.

Equipment Required: electronic counter (-hp- Model 5328A)

## NOTE

The instrument must have been ON for at least 20 minutes before performing this adjustment.
a. If the instrument has the Option 001 High Stability Frequency Reference installed, the rear panel connection from " 10 MHz Oven Output" to "Ext Ref In" must be disconnected.
b. Connect an electronic counter to the 3325 A signal output, using 50 -ohm input termination.
c. Set the 3325 A as follows:

Function . . . . . . . . . . . . . . . . . . . . . . . . . . Sine
Frequency. . . . . . . . . . . . . . . . . . . . . . . 20 MHz
Amplitude. . . . . . . . . . . . . . . . . . . . . . $10 \mathrm{Vp}-\mathrm{p}$
d. Adjust the counter to measure frequency (20 MIz).
c. Adjust Ref (A3R30) for a counter display of 20;060 000 MHz.

## 5-12. Option 001 High Stability Frequency Reference.

Equipment Required:
Oscilloscope, 2 channel (-hp- Model 1740A)
Quartz Frequency Standard, 5 MHz (-hp- Model 105B)

## NOTE

The rear panel " 10 MHz Oven Output" must be connected to "Ext Ref In".
a. This procedure is for instruments with the Option 001 High Stability Frequency Reference. The instrument must have been connceted to ac power (either in STBY or ON) for at least 30 minutes before attempting this adjustment.
b. Connect the frequency standard 5 MHz output to one vertical channel of the oscilloscope and trigger the sweep from this channel.
c. Set the 3325 A as follows:
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sine
Frequency . . . . . . . . . . . . . . . . . . . . 10 VHz
Amplitude . . . . . . . . . . . . .
d. Connect the 3325 A signal output to the second channel of the oscilloscope.
e. Adjust the Fine Adj (A9R7) to stop the 3325A signal on the oscilloscope display. (The frequency standard signal must be stationary, and the 3325 A signal as near stationary as possible.)
f. If the Fine Adj (A9R7) does not have enough range, proceed with Step g.
g. Adjust the Fine Adj (A9R7) to mechanical center.
h. Remove the screw from the Coarsc Frequency adjustment in the end of the temperature controlled oven assembly (A9E1).
i. Using a non-conductive tool, adjust the Coarse Adj, to stop the 3325A signal on the oscilloscope (as near stationary as possible).
j. Replace the serew in the oven assembly and repeat Step e.

5-13. Sinewave Amplitude Calibration. $\Delta 4$
Equipment Required:
Oscilloscope (-hp- Model 1740A)
10:1 Oscilloscope Probe (-hp- Model 10041A)
DC Power Supply (-hp- Model 6214A)
Oscillator (-hp- Model 204C)
AC digital voltmeter ( -hp - Model 3466A)
a. Set the 3325A to STBY.
$\Delta 4$ - see Section VII for alternate procedure

## GCAUTION

Do not allow disconnected cable connectors to contact the printed circuit board or components, or circuits may be damaged.
b. Adjust the dc power supply output to +5 V and connect it between the AMPTD MOD input and ground.
c. Disconnect cable W23 at A3J23.
d. Measure the oscillator (-hp- 204C) output with the ac digital voltmeter and adjust the output level to approximately 1 V rms at a frequency of 1 kHz . Connect the oscillator output between the center contact of A3J23 and ground.
e. Set 3325A power switch to ON and set EXT MOD to AM ON.
f. Connect the oscilloscope through a $10: 1$ probe to A3TP4. Set oscilloscope input to ac coupled, sweep to 1 ms/div.
g. Adjust $Y$ offset in (A3R60) to null out the sine wave signal on the display. (Change oscilloscope vertical gain as necessary to observe the signal.)
$h$. Ground the oscilloscope input and zero the trace on the center line. Set the input to dc coupled.
i. Adjust Offset Out (A3R68) to return the oscilloscope trace to the center line ( $\emptyset \mathrm{Vdc}$ ).
j. Set the 3325A to STBY. Disconnect the de power supply and the oscillator, and reconnect cable W23 to A3J23
k. Turn 3325A to ON,

1. Connect an ac digital voltmeter to the 3325A signal output via a 50 ohm feedthru termination.
m . Set the 3325A to 1 kHz , Sine, $1 \mathrm{Vp}-\mathrm{p}$, and 1 mV DC OFFSET. Press AMPTD CAL key.
n. Adjust Offset In (A3R33) for a voltmeter reading of .3536 Vrms $\pm .0040$ Vrms.
o. Repeat Steps m and $n$ until output voltage of .3536 Vrms does not change when AMPTD CAL key is pressed.
p. Set the DC OFFSET to 0 V . The output voltage should remain at .3536 Vrms $\pm .0040$ Vrms.
q. Set the output voltage to 10 Vp -p. The output voltage should be $3.536 \mathrm{Vrms} \pm .040$ Vrms.
r. If necessary, the adjustment of R60 may be compromised slightly to bring these two voltages into tolerance.

### 5.14. X Drive.

Equipment Required: de digital voltmeter (-hp- Model 3466A.)
a. Connect a de digital voltmeter to 3325A rear panel X Drive output.
b. Set the 3325A as follows:

| Funct | ne |
| :---: | :---: |
| Amplitude | $10 \mathrm{Vp}-\mathrm{p}$ |
| Sweep Start Freq. | 1 MHz |
| Sweep Stop Freq. | 10 MHz |
| Sweep Marker Freq | . 5 MHz |
| Sweep Time | . 0.999 sec |

c. Press RESET/START key to reset sweep to start conditions.
d. Digital voltmeter reading should be less than 20 mV .
e. Adjust X Drive (A14R6) to mechanical center.
f. Press RESET/START key once to initiate a single sweep. At the end of the sweep the digital voltmeter reading should be +10.450 to +10.550 V .
g. If the reading is less than +10.450 V , adjust X Drive (A14R6) slightly clockwise; and if reading is greater than +10.550 V , adjust X Drive slightly counterclockwise.

## NOTE

The voltmeter reading will not respond to adjustment of $X$ Drive (A14R6). The effect of this adjustment can be observed only after another single sweep. Following the end of a sweep, the $X$ Drive output voltage will drift downward at $\leq 1 m V$ per second.
h. Press RESET/START twice to initiate another sweep. If necessary, readjust X Drive (A14R6), turning clockwise to increase voltage and counterclockwise to decrease voltage.
i. Repeat Steps $g$ and $h$ until proper voltage $(+10.450$ to +10.550 V ) is measured immediately following the end of a sweep.

## 5-15. Amplifier Bias Adjustment, $\Delta 5$

Equipment Required: High frequency spectrum analyzer (-hp-Model 141T/8552B/8553B/8566A/8568A)
a. With the 3325A in its turn-on condition, set the frequency to 10 MHz , function to square wave, and amplitude to $.999 \mathrm{Vp}-\mathrm{p}$.
$\Delta 5$ - see Section VII if necessary for alternate adjustment locations
b. Adjust the spectrum analyzer as follows: Center Frequency. . . . . . . . . . . . . . . 50 MHz Bandwidth. . . . . . . . . . . . . . . . . . . . . 300 kHz Scan Width. . . . . . . . . . . . . . . . $0-100 \mathrm{MHz}$ Input Attenuation. . . . . . . . . . . . . . . . . 40 dB Video Filter . . . . . . . . . . . . . . . . . . . . . . 10 kHz Scan Time. . . . . . . . . . . . . . . . . . . $10 \mathrm{msec} / \mathrm{div}$ Log Reference Level. . . $+10 \mathrm{dBm}, 10 \mathrm{dBLOG}$ Vernier . . . . . . . . . . . . . . . . . . . . . . . . 5 dBm Scan Mode. . . . . . . . . . . . . . . . . . . . . . . . . INT \$can Trigger. . . . . . . . . . . . . . . . . . . . . AUTO
c. Connect the 3325 A signal output to the spectrum analyzer input. Do not use a $50 \Omega$ feed through termination.
d. The spectrum analyzer should display the high level odd harmonics and low level even harmonics of the IO MHz square wave.
e. Adjust the bias, A14R275 to minimize the 20 MHz second harmonic. It should dip sharply to $>34 \mathrm{~dB}$ below the fundamental.

### 5.16. Ramp Stability.

Equipment Required: Oscilloscope, with delayed sweep (-hp- Model 1740A)
a. Connect 3325A signal output to the oscilloscope vertical input. (Do NOT use a $10: 1$ probe.) If the oscilloscope is an hp- Model 1740A, set the input switch to the 50 -ohm position. If your oscilloscope does not have a 50 -ohm input, use a 50 -ohm load (-hp- Model 11048C 50-ohm Feedthru Termination) at the input.
b. Set the 3325A as follows:

Function. . . . . . . . . . . Positive Slope Ramp
Frequency . . . . . . . . . . . . . . . . . . . . . . . 100 Hz
Amplitude. . . . . . . . . . . . . . . . . . . . . . 10 Vp-p
Remove the RMP test jumper
c. Set the oscilloscope as follows:

| $V$ | iv |
| :---: | :---: |
| Main Sweep | . $2 \mathrm{~ms} / \mathrm{div}$ |
| Delayed Sweep | . $20 \mu \mathrm{~S} / \mathrm{div}$ |
| Trigger | . Negative |
| Delay | Mid Screen |
| Display | A or |

(Do not use ALT or CHOP)
d. Set the oscilloscope to delayed sweep. Adjust the delay to see the ramp reset jitter and read the positive ramp jitter in microseconds.
e. Press the Negative Ramp function on the 3325A.
f. Change the trigger on the oscilloscope to positive and note the negative ramp jitter in microseconds.
g. Bump the 3325A frequency to 99.999999 Hz and read the ramp jitter in microseconds.
h. If any of the above readings exceed $60 \mu \mathrm{~s}$, adjust A14C110 to reduce the jitter.
i. Repeat the ramp jitter measurements of steps $d$ and f, adjusting A14C110 as necessary to reduce the jitter to $60 \mu \mathrm{~s}$ or for the best compromise between the two.

## NOTE

If ramp jitter cannot be adjusted satisfactorily, troubleshoot the ramp generating circuitry (Service Group J).
j. The RMP test jumper can be left off if it results in the best possible adjustment.


Figure 5-1. Ramp Reset Waveform.

## 5-17. Amplitude Flatness. $\Delta 5$

Equipment Required: 1Vrms/50 Thermal Converter (-hp- Model 11050A), Digital Voltmeter (-hp- Model 3455A/3466A), Resistor 200S $1 \%$ 1/8W 0757-0407, Resistor $50 \Omega 1 \% 0.5 \mathrm{~W} 0698-5965$, Resistor $13 \Omega 1 \% 1 / 8 \mathrm{~W}$ 0757-0380, Resistor $25 \Omega 5 \% 1 / 4 \mathrm{~W} 0683-2505$, Resistor $150 \Omega 1 \% 1 / 8 \mathrm{~W}$ 0757-0284
a. Set the 3325 A as follows:
Function . . . . . . . . . . . . . . . . . . . . . . . . . . Sinc
Amplitude . . . . . . . . . . . . . . . . . . . 1 kp kz
b. Connect the 3325A signal output (through the $10 \mathrm{Vp}-\mathrm{p}$ pad and thermal converter) to the digital voltmeter (see Figure 5-2a).

## CAUTION

Insure that the input voltage to the thermal converter does not exceed IVrms. Also for best results, allow the thermal converter time to settle and adjust to surrounding temperatures.
c. Note and record the de voltage reading on the voltmeter. This is the flatness reference voltage.
d. Set the 3325 A frequency to 20 MHz . Using a nonconductive tool, adjust A 14 C 217 to obtain the same reading as the reference recorded in step c.
e. Set the 3325A to 10 MHz . Adjust A14R142 to obtain the same reading as recorded in step c. Repeat step d, adjusting A14C217 as necessary.
$\Delta 5$ sec Section VII for alternate procedure
f. Set the 3325 A to 16 MHz . The voltmeter reading should be within $\pm 0.15 \mathrm{mV}$ of the reference recorded in step c. If not, decrease padding capacitor A14C101 using the capacitors shown in Table 5-2. Repeat steps d and e .
g. Set the 3325 A to 20 MHz . Bump the frequency down to 1 MHz in 1 MHz steps. Note the de voltage at each frequency and insure that it is within $\pm 0.15 \mathrm{mV}$ of the reference recorded in step c.
$h$. If the dc voltage measured in the $19-21 \mathrm{MHz}$ range is out of tolerance, increase or decrease the value of Al4C103 as necessary, using the values shown in Table $5-2$. If A 14 C 103 is changed, repeat steps d and g .
i. Set the 3325 A amplitude to $3.0 \mathrm{Vp}-\mathrm{p}$.
j. Replace the $10 \mathrm{Vp}-\mathrm{p}$ pad with the $3.0 \mathrm{Vp}-\mathrm{p}$ pad (Figure $5-2 b)$. Repeat steps d and $g$. If a voltage measured in step $g$ is out of tolerance, repeat the amplitude flatness adjustment with the 3325A at both 10 Vp -p and 3 Vp -p until all voltages are within tolerance.

## CAUTION

Insure that the input voltage to the thermal converter does not exceed IVrms.

## 5-18. Mixer Spurious Signal.

Equipment Required; high frequency spectrum analyzer (-hp- Model 141T/8552B/8553B/8566A/8568A)
a. Set the 3325 A as follows:

Function Sine
Amplitude . . . . . . . . . . . . . . . . . . . . $0.999 \mathrm{Vp}-\mathrm{p}$
Frequency . . . . . . . . . . . . . . . . . . . . . 20 MHz
b. Set the spectrum analyzer as follows:

| Center Frequency | 10 MHz |
| :---: | :---: |
| Bandwidth | 30 kHz |
| Scan Width | $2 \mathrm{MHz} / \mathrm{div}$ |
| Input Attenuator. | 10dB |
| Scan Time | . $20 \mathrm{~ms} / \mathrm{div}$ |
| Log Ref Level | . 0 dB |
| Vernier | $-10 \mathrm{~dB}$ |
| Scale | .10dB log |
| Video Filter | 10 kHz |
| Scan Mode | Int |
| Scan Trigger |  |

c. Connect the 3325 A signal output to the spectrum analyzer's $50 \Omega$ input.
d. The $2: 1$ mixer spur should occur at 10 MHz . Using a non-conductive tool, adjust A3R115 (MXR ADJ) until the $2: 1$ spur is at a minimum. Check the VCO/2 spur at 5 MHz .
e. Using the modify keys, bump the frequency from 20 MHz to 11 MHz in 1 MHz steps. Observe the spectrum analyzer for spurious responses. At 18 MHz , check for the $3: 2 \mathrm{spur}$ at 6 MHz . Note that in all cases, all spurious responses should be $>70 \mathrm{~dB}$ below the desired signal.

Table 5.2. Padding Values.

| A14C101 | A14C103 |
| :---: | :---: |
| E8pf -hp-p/n 0140-0192 | 130 pt -hp-p/n 0140-0195 |
| 75pt -hp- p/n 0160.2202 | 140pf*-hp- p/n 0140-0217. |
| 82pf*-hp-p/n 0160-0145 | 150pf -hp-p/n0140-0196 |
| *Loaded Value |  |



Figure 5-2a. Amplitude Flatness Adjustment (10Vp-p Pad).


Fig 5
she if


TOP VIEW


BOTTOM VIEW


Fig 5-3 she $38^{4}$


$\Delta 5$ - see Section VII for adjust

Fig 5.3
She 4 of 4

$\Delta 5$ - see Section VII for adjustment locations on earlier boards

Figure 5-3. Location of Adjustments.

# SECTION VI REPLACEABLE PARTS 

### 6.1. INTRODUCTION.

6-2. This scction contains information for ordering replacement parts. Table 6-3 lists parts in alphanumeric order of their reference designators and indicates the description, -hp- part number of each part, together with any applicable notes, and provides the following:
a. Total quantity used in the instrument (Qty column). The total quantity of a part is given the first time the part number appears.
b. Description of the part. (See List of Abbreviations in Table 6-1.)
c. Typical manufacturer of the part is a five-digit code. (See Table 6-2 for List of Manufacturers.)
d. Manufacturer's part number.

6-3. Miscellancous parts are listed in Table 6-3 following their respective assemblies. General miscellaneous parts are listed at the conclusion of Table 6-3.

## 6-4. ORDERING INFORMATION.

6-5. To obtain replacement parts, address order or inquiry to your local Hewlett-Packard Field Office. (See List of Office Locations at the end of this manual.) Identify parts by their Hewlett-Packard part numbers. Include instrument model and serial numbers.

## 6-6. NON-LISTED PARTS.

6-7. To obtain a part that is not listed, include:
a. Instrument model number.
b. Instrument serial number.
c. Description of the part.
d. Function and location of the part.

## 6-8. PROPRIETARY PARTS.

6-9. Items marked by a dagger $(\dagger)$ in the reference designator column are available only for repair and service of Hewlett-Packard instruments.

### 6.10. PRINTED CIRCUIT ASSEMBLIES.

6-11. Printed circuit assemblies are listed in Table 6-3. An itemized parts listing of each as sembly is located in the service group associated with each printed circuit assembly.

Table 6-1. List of Abbreviations.


Table 6-2. List of Manufacturers.

| Mfr. <br> No. | Manufacturer Name |  |
| :---: | :--- | :--- |
| S0545 | Nippon Electric Co. | Address |
| 00000 | Any Satisfactory Supplier | Tokyo, JP |
| 00494 | Addressograph Multigraph Corp. | Cleveland, OH 44117 |
| 01121 | Allen-Bradley Co. | Milwauke, WI 53204 |
| 01295 | Texas Instr Inc. Semicond Cmpnt Div. | Dallas, TX 75222 |
| 03888 | KDI Pyrofilm Corp. | Whippany, NJ 07981 |
| 04713 | Motorola Semiconductor Products | Phoenix, AZ 85008 |
| 06383 | Panduit Corp. | Tinley Park, IL 60477 |
| 07263 | Fairchild Semiconductor Div. | Mountain View, CA 94042 |
| 13606 | Sprague Elect Co. Semiconductor Div. | Concord, NH 03301 |
| 18324 | Signetics Corp. | Sunnyvale, CA 94086 |
| 19701 | Mepco/Electra Corp. | Mineral Wells, TX 76067 |
| 24546 | Corning Glass Works (Bradford) | Bradford, PA 16701 |
| 26654 | Varadyne Inc. | Santa Monica, CA 94040 |
| 27014 | National Semiconductor Corp. | Santa Clara, CA 95051 |
| 28480 | Hewlett-Packard Co. Corporate Hq. | Palo Alto, CA 94304 |
| $3 L 585$ | RCA Corp. Solid State Div. | Somerville, NJ |
| 32293 | Intersil Inc. | Cupertino, CA 95014 |
| 32997 | Bourns Inc. Trimpot Prod Div. | Riverside, CA 92507 |
| 34335 | Advanced Micro Devices Inc. | Sunnyvale, CA 94086 |
| 51642 | Centre Engineering Inc. | State College, PA 16801 |
| 52763 | Stettner Electronics Inc. | Chattanooga, TN 13035 |
| 55576 | Synertek | Santa Clara, CA 95051 |
| 56289 | Sprague Electric Co. | North Adams, MA 01247 |
| 72136 | Electro Motive Corp. | Florence, SC 06226 |
| 74970 | Johnson E F Co. | Waseca, MN 56093 |
| 75042 | TRW Inc. Philadelphia Div. | Philadelphia, PA 19108 |
| 75915 | Littelfuse Inc. | Des Plaines, IL 60016 |
| 84411 | TRW Capacitor Div. | Ogalala, NE 69153 |
| 91637 | Dale Electronics Inc. |  |
|  |  |  |
|  |  |  |

Table 6-3. Replaceable Parts

| Reference Designation | HP Part Number | $\begin{aligned} & C \\ & D \end{aligned}$ | Oty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A ${ }^{2}$ | 03325-66502 | 9 | 2 | POWER SUPPLY ASSY | 28480 | 03325-66502 |
| A 2 Cl | 0160-3508 | 9 | 5 | CAPACITOR - FXD 3 UF +80-20\% 50UDC CER | 28480 | 0160-3509 |
| A2Cl | 0160-3500 | 9 9 |  |  | 28440 28480 | $0160-3508$ $0160 \cdots 3558$ |
| A2C3 $\mathrm{A}_{2} \mathrm{C} 4$ | $0160-3558$ $0160-3558$ | 9 9 | 25 |  | 28480 28480 | $0160-3558$ $0160-3558$ |
| A2C5 | 0180-2635 | 3 | 2 | CAFACITOR F-FD $10004 \mathrm{~F}+50 \cdots 10 \% 350 D C$ At. | 29480 | 0180-2635 |
| A 2.6 | 0160-3509 | 9 |  | CAPACTTOR -FXD 1UF + $90-20 \%$ 50UDC CER | 28480 | 0160-3508 |
| A2C7 | 0180-0309 | 4 | 1 | CAPACITOR -FXD 4.7UF+-20\% 10UDC TA | 56.289 | $1501475 \times 001042$ |
| AEcb | $0180 \cdot 2635$ | 3 |  | CAPACYTOR-FXD 1000UF*50-10\% 35UDC AL | 28480 | 0180-2639 |
| A2CS | $0180-4610$ | g | ${ }^{1}$ | CAPACXTOR-FXD GODQUF $+50 \% 10 \%$ 16UDC AL | 28480 | 0180--4610 |
| ARC10 | 0 160 -3847 | 9 | 141 | CAPACTTOR FFXD . 01 UF +100-0\% 50UDC CER | 28480 | 0160-3847 |
| A2.c11 | 0160-3508 | 9 |  | CAPACITOR -FXD 1UF +80-20\% 50UDC CER | 28490 | 0160-3506 |
| A2Cle | 0160-4571 | ${ }^{8}$ | 28 | CAPACITRR--FFXD , 1UF +80-20\% SOUDC CER | 23480 | $0160-4571$ $1500685 \times 000642$ |
| Acci4 | 0190-1731 | $\stackrel{2}{2}$ | 2 | CAPACITOR-FXD $6.8 \mathrm{BJF}+-20 \%$ GUDC TA | 58289 28480 | $1500685 \times 000642$ $0160 \cdots 3647$ |
| A PC15 A 2 C 16 | $0160-3847$ $0180-2623$ | 9 1 1 | 6 |  | 28480 29480 | $0160 \cdots 3647$ $0180 \cdots 2823$ |
| A2C17 | 0180-0423 | 3 | 2 | CAPACITOR-FXD 100 UF- $500-10 \%$ 25UDC AL. | 28480 | 0180-0423 |
| A2cig | 0 1880423 | 3 |  | CAPACITOR-FXD 100UF+50-10\% 25UDC AL. | 29480 | 0180-0423 |
| A2cis | 0180-3008 | 6 | 1 | CAPACITOR -FXD 470UF+50-10\% 35UDC AL. | 20480 | 0180-3008 |
| A2Czo | 0180 2823 | 1 |  |  | 20400 | 0180-2823 |
| ARCR1 | 1901-0662 | 3 | 4 | DIODE-PWR RECT $100 \cup 6 A$ | 04713 | MR ${ }^{\text {2 } 51}$ |
| AECR2 | 1901-0662 | 3 |  | DTODE.-PWR RECT $100 \cup$ 6A | 04713 | MR751 |
| A2CR3 | 1901-0662 | 3 |  | DIODE-PWR RECT 10BU 6A | 04713 | MR751 |
| ACCR4 | 1901-0662 | 3 |  | DrODE. PWR RECT 100 V GA | 04713 | MR751 |
| azcrs | 1902-0025 | 4 | 2 | DIODE-ZNR $1005 \% \mathrm{DO}-35 \mathrm{SD}=4 \mathrm{4W} \mathrm{TC}=+.06 \%$ | 28480 | 1902-00025 |
| AECR7 | 1902-3214 | 9 | 1 | DIODE--ZNR 16, $20.2 \%$ DO-35 PD=m,4W | 26480 | 1902-3214 |
| AECRE | 1901-0040 | 1 | 46 | DIODE SWITCHING 30U 50MA 2NS DO-35 | 20480 | 1901-0040 |
| AECR9 | 1902-0777 | 3 | 3 | DIODE-ZNR 1 NGES $6.205 \%$ DO $7 \mathrm{PD} \pm, 4 \mathrm{~W}$ | 04713 | $1 \mathrm{NGE5}$ |
| ARCR 10 | 1884-0266 | 5 | 1 | THYRISTOR-3CR 2N6400 TO-22BAB URRM=50 | 3 L 585 | 2NS400 |
| ACCR12 | 1901-0040 | 1 |  | DIDDE--SWITCHTNG 30V 50MA 2NS DC--35 | 28480 | 1901-0040 |
| A2CR13 | 1901-0040 | 1 |  | DIODE- SWITCHING 30U SOMA ENS DO-35 | 28480 | 1901-0040 |
| AECR 14 | 1901-0040 | 1 |  | DIODE-SWITCHING 30U SOMA 2NS DO-35 | 28480 | 1901~0040 |
| AECR 15 | 1901-0518 | 8 | 13 | DICIDE-SH STG SCHOTTKY | 28480 | 1901-0518 |
| A 2 CR16 | 1901-0040 | 1 |  | DIODE--5WITCHING 3OV 50MA 2 NS DO-35 | 29400 | 1701-0040 |
| AzCR17 | 1901-0535 | 9 | 7 | DIODE-SM SIG SCHOTTKY | 28480 | 1901-0535 |
| A2CR18 | 1901-0518 | $\theta$ |  | DIODE-SM SIG SCHOTTKY | 28480 | 1901-0.518 |
| A ${ }^{\text {K } 1}$ | 0490-0745 | 9 | 1 | RELAY IC GUDC-COIL. IA 11 SUAC | 28480 | 0490-0745 |
| A2L. 1 | 9100-3807 | 4 | 1 | INDUCTOR RFF-CH MLD $110 \mathrm{NH} 5 \% .166 \mathrm{DX}, 305 \mathrm{LGG}$ | 28480 | $9100-3607$ |
| ${ }^{\text {A2PP }}$ ? | 1251-4246 | 18 | 4 | CONNECTOR 3 -PIN M POST TYPE | 28480 38480 |  |
| Aepr | 1251-3750 | 7 | 2. 1 | CONNECTOR $10 \sim P I N M P O S T ~ T Y P E ~$ CONNECTOR $6 \cdots P$ MNM POST TYPE | 28480 23480 | $1251-3750$ $1251-3638$ |
|  | $1251-3638$ $1251-4246$ | ${ }_{0}^{0}$ | 1 | CONNECTOR GOPTN M POST TYPE CONNECTOR 3 PIN M POST TYPE | 23480 28480 | $1251-3638$ $1251-4246$ |
| A2P5 | 1251.3570 | 7 | 2 | CONNECTOR 10-PIN M POST TYPE | 28480 | 1251-3570 |
| ARQ1 | 03325-66901 | 2 | 1 | XSTR ASSEMEL.Y | 28480 | 033325-66901 |
| AEDS | 03325-66902 | 3 | 1 | XSTR ASSEMELLY | 20480 | $033255-66902$ |
| Azas | 03325-66903 | 4 | 1 | XGTR ASSEMELY | 284880 | 03325-66903 |
| AECL4 | 1854-0094 | ${ }_{5}^{4}$ | 1 | TRANSISTOR NPN SI PD= 200 MW FTE350MHZ | 28488 | 1854 40004 |
| A2Q5 | 1853-0069 | 5 | 16 | TRANSIETOR PNF $2 N 4917$ SI PD=0.00MW | 67263 | 2N49:7 |
|  | $1854-0215$ $1853-0089$ | $\stackrel{1}{5}$ | 22 | TRANSISTOR NPN ST PD= 350 MW FT $=300 \mathrm{MHZ}$ TRANSISTOR PNP SN4917 | 64713 07263 | 2 N 3904 2N4917 |
| A 2 D日 | 1854-6215 | 1 |  | TRANSISTOR NPN SX PD= 350 MW FTm 300 MHZ | 04713 | 2 N 3904 |
| AEQP | 1054-0071 | 7 | 3 | TRANSISTOR NPN SI. PD=300¢W FFT=200MłZ | 28480 | 18554-0.071 |
| AEM10 | 1954-0692 | 8 | 3 | TRANSISTOR NPN SI PD=15W FT $=50 \mathrm{MHZ}$ | 04713 | MJFe23 |
| A2Q1 1 | 1853-0099 | 5 |  | TRANSIGTOR PNP 2N4917 SI PD=200MW | 07263 | 2N4917 |
| A 2 R 12 | 1953-0450 | 4 | 2 | TRANSISTOR PNP SI TO-220AB PD=60W | 04713 | MJE371K |
| A2Q13 | 1853-0066 | 0 | 4 | TRANSISTOR PNP SI TO $92 . \mathrm{PD}=625 \mathrm{MW}$ | 284B0 | $1853-0066$ |
| A2R 1 | $0757-0283$ $0757-0283$ | 6 | 10 | RESISTOR 2 K RESISTOR 2K R | 24546 24546 | $\begin{aligned} & C A-1 / 9-T 0-2001-F \\ & C 4-1 / B-T 0-2001 \cdots-F \end{aligned}$ |
| A2R2 A2R3 A2S | $0757-0263$ $0683-2035$ | 6 3 | 3 |  | 24546 01121 | C4-1/8-T0.2001~F CE2035 |
| A2R4 | 0811-2546 | 4 | 1 | RESISTOR . $565 \%$. $5 W$ PW TC $=0+\cdots 300$ | 75042 | 214- $20-1 / 2-R 56-J$ |
| ARRS | 0683-3925 | 2 | 1 | RESISTOR $3.9 \mathrm{~K} 5 \%$, 25w FC TC $=-400 /+700$ | 01121 | C83925 |
| A2R6 | 0757-0200 | 3 | 17 |  | 24546 | C4-1/9-70-1001-F |
| A ${ }^{\text {RR' }}$ | 0757-0280 | 3 |  | RESISTOR $1 \mathrm{~K} 1 \%$, 125W F TC=0 $0+100$ | 24546 | C4-1/8-T0-1001-F |
| ARRE | 0683-2035 | 3 |  | RESISTOR 20K 5\%, 25W FC TC $=-400 /+800$ | 01121 | C82035 |
| AER9 | 0683-1025 | 9 | 35 | RESISTOR $1 \mathrm{~K} 5 \%$, 25 FW FC TEx $-400 / 4660$ | 01121 75042 |  |
| A2R 10 | 0811-0548 | 2 | 1 | RESIBTIR , $475 \%$. $5 W$ PW TC=0+ 300 | 75042 | BW20-5/10". 47R-J |
| A2R 11 | 0683-1025 | 9 |  |  | 01121 01121 | $\begin{aligned} & \text { CE1025 } \\ & \text { CB4715 } \end{aligned}$ |
| ARR12 ARR 13 | $0663-4715$ $0603-1525$ | 4 | 7 | RESISTOR RESISTOR R | 01121 01121 | Cb4715 CE1525 |
| ARR13 ${ }_{\text {AR }}$ | -0683-1525 | 4 | 4 23 | RESISTOR RESISTOR $1005 \%$ $100 \%$, $255 W$ | 01121 01121 | $\begin{aligned} & \text { CE1525 } \\ & 081015 \end{aligned}$ |
| ARR14 ARR1E | $0683-1015$ $0757-0404$ | 7 3 | 23 1 |  | 01121 24546 | $\mathrm{C}, 81015$ $\mathrm{C} 4 \cdots 1 / 8-70 \cdots 131 \cdots \mathrm{~F}$ |
| ARR 16 | 0757-0441 | 8 | 2 | RESISTOR 8.25K 1\% , 125W F TCwion-100 | 24546 | C4-1/8-T0-6251-F\% |
| ARR17 | 0757-0460 | 1 | 1 | RESIETOR $61.9 \mathrm{~K} 1 \% .125 \mathrm{~W} \mathrm{~F}$ TC=0r-100 | 24546 | C4-1/6-T0-6192-F |
| A2R18 | 0603-5125 | 㫛 | 2 | RESISTOR 5. $1 \mathrm{~K} 5 \mathrm{5K}$, 25 W FC TCE $-400 /+700$ | 01121 | C65125 |
| ARR19 | 0683--2705 | 4 | 1 | RESISTGR $275 \%$, 25W FC TC $=-480 /+560$ | 01121 28480 | C112705 |
| A 2 R20 | 0698-6360 | 6 | 7 | RESISTOR 10K $1 \%$, 125w F TC=0+-25 | 28480 | 0698-6360 |

See introduction to this section for ordering information
*Indicates factory selected value

Table 6-3. Replaceable Parts

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation \& HP Part Number \& C \& Oty \& Description \& Mfr Code \& Mfr Part Number <br>
\hline A2R21 \& 0683-1015 \& 7 \& \& RESISTOR $1005 \%$. 25 W FC TCE $=-400 /+500$ \& 01121 \& C81015 <br>
\hline A2R22 \& 2100-3296 \& 8 \& 1 \& RESTISTOR-TRMR $1 \mathrm{~K} 10 \% \mathrm{C}$ TOF-ADJ 17 -TRN \& 20460 \& 2100-3296 <br>
\hline A2aliz \& 0698-6637 \& 8 \& 3 \&  \& 28480 \& 0696-6619 <br>
\hline Agrea \& $0698-6320$ \& 8 \& 5 \& RESISTOR $5 \mathrm{~K}, 1 \%$, 125W F TC $=0+-25$ \& 03688 \& PME55-1/8-79-5001-E <br>
\hline A2Res \& 0663-1045 \& 7 \& \& RESTGTOR $1005 \%$, 25W FC TC=-400/4500 \& 01121 \& C810t5 <br>
\hline ARR26 \& 0698-9191 \& 5 \& 1 \& RESISTOR 12,5K . $1 \%$, 1254 F TC $=0+25$ \& 19701 \& MF4C1/8-T9-1252-E <br>
\hline A 2123 \& 0693-8060 \& 7 \& 1 \& RESTSTOR 8.64K, 1\% .125W F TC=0 + - 25 \& 17701 \& MF-4C1/8-79-8641-m <br>
\hline A 2 R28 \& 0698-3512 \& 4 \& 1 \&  \& 24546 \& C4 1/8-70 1181-F <br>
\hline A2R29 \& 0693-1015 \& 7 \& \& RESISTOR $1005 \%$, 25W FC TC, $-400 /+500$ \& 01121 \& $\mathrm{CrP}^{1015}$ <br>
\hline Aerso \& 0683-11035 \& 1 \& 27 \& RESTSTOR $10 \mathrm{~K} 5 \%$, 250 FC TC= $=-400 /+700$ \& 01121 \& CE1035 <br>
\hline AElr3s \& 0683-4725 \& 2 \& 4 \& RESTGTOR 4.7K 5\% .25W FC: TC $=-400 /+700$ \& 01121 \& C84725 <br>
\hline Aerr33 \& 0698.6360 \& 6 \& \& RESISTOR $10 \mathrm{~K}, 1 \%$, 12EW F TCom+25 \& 28460 \& 069806360 <br>
\hline A 2 R3 34 \& 0693-1043 \& 3 \& 7 \& RESIBTOR 100K 5\% . 25 LW FC TC $=-400 /+300$ \& 01121 \& CE1043 <br>
\hline AER3S \& 0683-2035 \& 3 \& \&  \& 01121
01121 \& crea
E.ES 115 <br>
\hline A21R36 \& $0686-5115$ \& 2 \& 1 \& RESISTOR $5105 \%$. $5 W$ CE $T C=0+529$ \& 01121 \& E.ES 115 <br>
\hline ARR 41 \& 0683-1005 \& 5 \& 1 \& RESISTOR 10 SK . 25 W FCC TC $=7.400 /+500$ \& 01121 \& CE1005 <br>
\hline A2R 42
$A R R 43$ \& $0683-1625$
$0683-3025$ \& 5
3 \& 1 \&  \& 01121
01121 \& C61625
ces
ces <br>
\hline A2'S1 \& 3101-116, \& 6 \& 1 \& SWITCA-SI SPDT MXNTR . 5 A 125VAC/DC PC \& 28480 \& 3101-1162 <br>
\hline A2s2 \& 3101-2042 \& 3 \& 1 \& SWITCH-9L DPDT GTD 2a z50vac slidemlue \& 29480 \& 3101-2042 <br>
\hline A2:1 \& 1906-0096 \& 7 \& 3 \& DKODE-FW ERDG 200U 2 A \& 04713 \& MDACOE <br>
\hline  \& 1826-06678 \& 1 \& 3 \& IC OP AMP GP DUAL T0-99 PKE \& 27014 \& L.M350] <br>
\hline ARU3 \& 1826-0676 \& 1 \& \& Ic OP AMP GP DUAL T0-99 PKG \& 27014 \& L.m3ES3 <br>
\hline A $\mathrm{CLS}^{4}$ \& 1826-0678 \& 1 \& \& 1C. OP AMP GP DUAL TO-99 PKG \& 27014 \& L. 13358 EH <br>
\hline $\mathrm{A}_{2} \mathrm{~V}_{1}$ \& 0937-0120 \& 0 \& 1 \& varistor-130vac \& 28480 \& 0837-0120 <br>
\hline \& 1251-0600 \& 3 \& 34 \& CONNECTOR - SGL Cont Pin 1,14.MMr-ASC--SZ SQ \& \& <br>
\hline \& $1400-0507$
$2200-0143$ \& 3 \& 1 \&  \& $$
\begin{aligned}
& 28480 \\
& 28480
\end{aligned}
$$ \& $$
\begin{aligned}
& 1400-0507 \\
& 2200 \cdots 0143
\end{aligned}
$$ <br>
\hline \& 226000009 \& 3 \& \&  \& 00000 \& orier by description <br>
\hline \& 2.360-0113 \& 2 \& 67 \& SCREW-MACH $6+32.25-I N-L G$ PAN-HD-POKI \& 00000 \& torder gy description <br>
\hline \& 3050.0440 \& 2 \& 3 \& WASHER-SHLTJR NO, 4, 115-IN.-ID . 2 -IN-OD \& 28480 \& 3050-0440 <br>
\hline \& $$
\begin{aligned}
& 7120-6712 \\
& 7121.1234
\end{aligned}
$$ \& 6
9 \& 9 \& L.AEEL-WARNING 5 -IN-WD $1-\operatorname{IN}-L G$ M $Y$ L.AR LABEL-CAUTION 1.925-IN-WD $2.24-$ - N -LG \& $$
\begin{aligned}
& 28480 \\
& 28480
\end{aligned}
$$ \& $$
\begin{aligned}
& 7120-6712 \\
& 7121-1234
\end{aligned}
$$ <br>
\hline A3 \& 0.3325-66503 \& 0 \& 2 \& SIGNAL SOURCE ASSY \& 28480 \& 03325-66503 <br>
\hline ABC\% \& 0160-3558 \& 9 \& \& CAPACITOR-FXD . $1 \mathrm{UF}+\ldots 20 \%$ SOUDC CER \& 28480 \& 0160-3558 <br>
\hline A 3 Cl 2 \& 0160-3847 \& 9 \& \& CAPACITOR-FXD . 014 F + $10000 \%$ SOUDC CER \& 29490 \& 0160-3847 <br>
\hline ${ }^{\text {A }} 303$ \& 0150-0362 \& 7 \& 2 \& CAPACITOR - FXD 510P\% +-5\% 300YDC MICA \& 28480 \& $0160-0362$ <br>
\hline A 3 C64 \& 0160-0362 \& 7 \& \& CAPACTTOR-FXD 510PF +-5\% $300 \cup \mathrm{DDC}$ MTEA \& 29430 \& 0160-0362 <br>
\hline A $\mathrm{SCG}^{\text {a }}$ \& 0160-3847 \& 9 \& \& CAPACITOR-FXD . Q1UF $+100 \cdots 0 \%$ SOUDC CER \& 28480 \& 0160-3847 <br>
\hline A $\mathrm{SCO}^{\text {c' }}$ \& 0160-2204 \& 0 \& 4 \& CAPACITGR-FXD 100PF + 5\% 300UDC MICA \& 29480 \& 0160-2204 <br>
\hline A.3C0 \& 0100-8223 \& 6 \& 3 \& CAPACITOR - FXD 22aF+ $+10 \% 150 \mathrm{DC}$ TA \& 56289 \& $1500226 \times 901518$ <br>
\hline A3C9 \& 0160-3558 \& 9 \& \& CAPACITOR-FXD, 1UF +-20\% EOUDC CER \& 29480 \& $0160-3558$ <br>
\hline A3Cil \& 0160-0174 \& 9 \& 1 \& CAPACITOR-FXD, 47JF + $\mathrm{BO}^{\text {- } 20 \%}$ 2SUDC CER \& 23480 \& 0160-0174 <br>
\hline  \& 0140-0191 \& 8 \& 4 \& CAPACITOR-FXD 56PF +-5\% 300UDC MICA \& 72136 \& DM15E560.j0300WUICR <br>
\hline A30.3 \& 0140-0199 \& 6 \& 1 \& CAPACITOR - FXD 240PF + -5\% 300UDC MICA \& 72136 \& DM1EF2415030 OWV1CR <br>
\hline A3C14 \& 0160-22364 \& 2 \& 1 \& CAPACITOR-FXD 20PF +-5\% 50DUDC CER 0.-30 \& 2.18480 \& 0160-2264 <br>
\hline A 3 Cl 16 \& 0160-3847 \& 9 \& \& CAPACTTOR-FXD , 014F $+100-6 \%$ SOUDC CER \& 28480 \& 016,0-3847 <br>
\hline A 3 C 17 \& 0160--3647 \& 9 \& \& CAPACTTOR-FXD . O1UF $+100 \cdots 0 \%$ 50UDC CER \& 28480 \& 0160 -384\% <br>
\hline A3018 \& 0140-0204 \& 4 \& 1 \& CAPACETOR-FXD 47PF +-5\% 500UDC MICA \& 72136 \& DM15E4705050 OWUACR <br>
\hline Axctic \& 0160-3947 \& 9 \& \& CAPACITOR-FXD . $01 . \mathrm{JF}+100-0 \%$ 50UDC CER \& 29480 \& 0160-3847 <br>
\hline Asean \& 0160-2.25i2 \& 8 \& 2 \& CAPACITOR-FXD 6.2PF +-.25PF 500UDC CER \& 28480 \& 0160-2255\% <br>
\hline A 3 C21 \& 0180-0197 \& 8 \& 2 \& CAPACTTER-FXD 2, 2UF $+\cdots 10 \%$ 20UDC TA \& 56289 \& $150 \mathrm{Da25} \mathrm{\times 902042}$ <br>
\hline A3caz \& 0180-0197 \& 8 \& \& CAPACITOR-FXD $2.2 U F+-10 \%$ zOUDC $T A$ \& 56289 \& $150 \mathrm{DE25} \times 9020 \mathrm{~A} 2$ <br>
\hline A3C23 \& 0180-1746 \& 5 \& 23 \& CAPACITITR-FXD 15UF+-10\% 20UDC TA \& 56.299 \& 1500156×902002 <br>
\hline A 3 ceat \& 0160-3155e \& 9 \& \& CAPACITOR - FXD . 1 UF + $20 \%$ SQUDC CER \& 28460 \& 0160 -3558 <br>
\hline A3C26 \& 0160-3847 \& 9 \& \& CAPACITOR-FXD , O1UF +100-0\% SOUDC CER \& 29490 \& $0160-3847$ <br>
\hline  \& 0160-3847 \& 9 \& \& CAPACTTOR-FXD, 01UF $+100-0 \%$ SOUDC CER \& 23480 \& 0160-3847 <br>
\hline A3C28 \& 0160--3947 \& 9 \& \& CAPACITOR -FXD .01UF $+100 \cdots 0 \%$ S0UDC CER \& 28480 \& 016003847 <br>
\hline  \& 0160-3947 \& 9 \& \& CAPACITOR-FXD, 010F +100~0\% SOUDC CER \& 28480 \& 0160-3E47 <br>
\hline A 3 Cl 31 \& 0180--0229 \& 7 \& 1 \& CAPACITOR-FXD 33IFF+-10\% 10UDC TA \& 56289 \& $1500336 \times 901082$ <br>
\hline A3C32 \& 0180-1746 \& 5 \& \& CAPACITOR-FXD 15UF\%-10\% 20UDC TA \& 56289 \& $150 \mathrm{D156} \mathrm{\times 902012}$ <br>
\hline Ascess \& 0180-1746 \& 5 \& \& CAPACTTDR-FXD 15UF+-10\% 20UDC TA \& 56289 \& 150D156×902082 <br>
\hline A

A 303636 \& $0160-3847$
$0160 \cdots 3847$ \& $\stackrel{7}{9}$ \& \& CAPACITOR-FXD . $11.10 F+100 \cdots 0 \%$ 50VDC CER \& 28490 \& 0160-3847 <br>
\hline  \& 0160-3847 \& 9 \& \& CAPACITOR-FXD , $014 \mathrm{~F}+10000 \%$ S0UDC CER \& 23488 \& 0160-3847 <br>
\hline A3CLS ${ }^{\text {a }}$ \& 0160-3847 \& 9 \& \& CAPACITOR-FXD . $01 \pm \mathrm{UF}+100 \cdots \%$ Soudc CER \& 28480 \& 0160-3847 <br>
\hline AзSC3 \& 0160-3847 \& 9 \& \& CAPACITOR-FXD .01UF $+100 \cdots \%$ SUUDC CER \& 28480 \& 0160-3847 <br>
\hline A 3 Cl 39 \& 0160-3847 \& 9 \& \& CAPACTYOR-FXD .01UF +100-0\% S0UDC CER \& 29480 \& 0160-3847 <br>
\hline A 3 CAP \& 0160 -3847 \& 9 \& \& CAPACITOR-FXD, $014 \mathrm{~F}+100 \cdots 0 \%$ S0UDC CER \& 28480 \& 0160-3847 <br>
\hline A 31542 \& 0160-3520 \& 5 \& 1 \& CAPACITOR-FXD $75 P 5+-1 \% 100 \cup D C$ MICA \& 28480 \& 0160-3520 <br>
\hline A3C.43 \& 0160--2as4 \& 0 \& 1 \& CAPACITOR-FXD $7.5 \mathrm{PFF}+-.25 P \mathrm{~F}$ 500UDC EER \& 29480 \& $0160 \cdots 2254$ <br>
\hline AJC44 \& 0160-2255 \& 1 \& 1 \&  \& 28480 \& 0160-2255 <br>
\hline A3C46 \& 01.60-3847 \& 9 \& \& CAPACJTRR-FXD , $110 \mathrm{~F}+100-0 \%$ SOUDC CER \& 29480 \& 0160-3947 <br>
\hline A3C47 \& 0160-3085 \& 7 \& 1 \& CAPACTYOR-FFXD 510pF +-1\% 300UDC MICA \& 28480 \& 0160-3085 <br>
\hline А ${ }^{\text {3 }}$ ¢ 48 \& 0160-2199 \& 2 \& 1 \& CAPACIT TOR-FXD 30PF +-5\% 300VDC MTCA \& 28480 \& 0160-2197 <br>
\hline
\end{tabular}

[^4]Table 6－3．Replaceable Parts

| Reference Designation | HP Part Number | $\begin{aligned} & C \\ & D \end{aligned}$ | Qty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0160－3847 | 9 |  | CAPACITOR－FXD ，O1UF $1000-0 \%$ SOUDC CER | 20480 | 016．0－3847 |
| A 3051 | 0160－3047 | 9 |  | CAPACITDR－FXD ． $014 \mathrm{~F}+100 \cdots 0 \%$ S0UDC CER | 28480 | 016．0－3847 |
| A 3 CSE | 0160－3947 | 9 |  | CAPACTTOR－FXD ．01UF $+100 \cdot 0 \%$ S0UDC CER | 28460 | 0160－3847 |
| A．3053 | 0160－3047 | 9 |  | CAFACITOR FXD． $014 \mathrm{~F}+1000 \%$ SOUDC CER | 29480 | $0160 \cdots 3847$ |
| A 3 CSt $L_{1}$ | 016， $3 \cdot 3847$ | 7 |  | CAPACTTOR FED ． $014 \mathrm{~F}+100.0 \%$ Soud cer | 28480 | 0160－3947 |
| A3C57 | 0160－2265 | 3 | 2 | CAPACTTOR－FXD ECPF＋－5\％500UDC CER 0． 30 | 28400 | 014，0－2265 |
| A 3 CSE | 0160－2265 | 3 |  |  | 28480 | 0160－236．5 |
| A33C59 | 0160－3847 | 7 |  | CAPACTTOR－FXD－D1UF＋100－0\％50UDC CER | 29480 | 0160.3847 |
| A3C6， | 6160－3947 | 9 |  |  | 26486 | 0160－3847 |
| A3C101 | 0160－3958 | 9 |  | CAPACTTOR－FXD ．14F＋－20\％50UDC CER | 23480 | （1） 16033558 |
| A3C102 | 0160－3647 | 9 |  | CAPACTTOR－FXD ． $014 \mathrm{~F}+100-0 \%$ 50UDC CER | 29460 | 0160－3847 |
| A 3 Cl 103 | 9160－3847 | 9 |  | CAPACITOR－FXD ．O1UF $+100-0 \%$ S0UDC CER | 29480 | 0960－3847 |
| A 3c104 | 0180～1746 | 5 |  | CAPACITOR－FXD 15UF＋－10\％2JUDC TA | 56269 | 150D156x902012 |
| A3C10 | 0160－325s | 8 |  |  | 29480 | 016．0－225 |
| A3C107 | 0160－2266 | 4 | 1 |  | 2 EAEO | 0160．2266 |
| A3C108 | 0180 11746 | 5 |  | CAFACTTOR FXD 15UF＋－10\％20UDC TA | 56289 | 150D156×9020日2 |
| A 3 C109 | 0160－2293 | 7 | 1 | CAFACYTOR FXD 51．5PF $+-1 \%$ 500UDC MICA | 28480 | 0160 －2293 |
| A3C111 | 0160－2263 | 1 | 1 | CAPAC：TTOR－FXD 16PF $4-5 \%$ 500UDC CER $0+\cdots 30$ | 28486 | 0160－2263 |
| A3C112 | 0160－2372 | 3 | 2 | CAPACITOR－FXD ATPF＋－2\％300UDC MICA | 28480 | 0150－2372 |
| A3C：113 | 0160－2\％60 | $3_{3}$ | 1 | CAPACTTOR－FXD 13FF＋－5\％50DUDC CER 0＊－30 | 20480 | 0160－2260 |
| A3C114 | 0160－2372 | 3 |  |  | 28480 | 0160－2372 |
| A3Cl16 | 0190－1746 | 5 |  | CAPACITOR－FXD 15UF＋－10\％20VDC TA | 56289 | $1500156 \times 902002$ |
| A3C117 | 0160－3947 | 9 |  |  | 23480 | 0160－3847 |
| A3c118 | 0160－3847 | 9 |  | CAPACITDR－FXD ． $01 \mathrm{JF}+100 \cdots 0 \%$ 50UDE CER | 28490 | 9160．－3847 |
| A3Cl19 | 0160－3847 | 7 |  | CAPACITOR－FXD ，O1UF $+100 \cdots 0 \%$ SGUDC CER | 2 E 480 | 016．0－384\％ |
| A3C120 | 0160－22．44 | 8 | 5 | CAPACITOR－FFXD 3PF＋－25PF SOOUDC CER | 28480 | 0160－2244 |
| A3C121 | 0140－0190 | 7 | 4 | CAPACXTOR FXD 39PF＋－5\％300UDC MICA | 72136 | DM15E390J0300w 1 ICR |
| A3C12： | 0160－2251 | 7 | 2 |  | 28480 |  |
| A3C123 | 0140－0190 | 7 |  | CAPACITOR F－FXD 39PF＋－5\％300WDC MICA | 72136 | DM15E39050300WUICR |
| A3C124 | 0160－2\％44 | $B$ |  | CAPACTTOR－FXD 3PF＋－，25PF 50OUDC CER | 29480 | $0160 \cdots 2244$ |
| A BC 126 | 0140－0190 | 7 |  | CAPACITOR－FXD 39PF＋SK 300VDC MICA | 72136 | DM15E390J0300WV1CR |
| A3C127 | 0168－－2351 | 7 |  | CAPACITOR－FXD 5．6PF＋－．25PF 500UDC CER | 29480 | 0160－225 1 |
| A3C128 | 0140－0190 | 7 |  | CAPACITOR－FXD 39PF＋ $5 \%$ 300UDC MICA | 72136 | DM15E390，5030 OWV1CR |
| A 3 Cl 29 | 0160－2244 | 8 |  | CAPACTTOR－FXD 3PF＋． $25 P \mathrm{FF}$ S00UDC CER | 29490 | 0160－2244 |
| A 3 C151 | 0160－3847 | 7 |  | CAPALITOR－FXD ，01UF＋100－0\％SOUDC CER | 28480 | 0160－3647 |
| A3C152 | 0160－3847 | 9 |  | CAPACTTOR FXD， $014 \mathrm{~F}+100$ O\％50UDC CLR | 28480 | 0160－3847 |
| A3C153 | 0160－3847 | 9 |  | CAPACITOR－FXD ． $014 \mathrm{FF}+100 \cdots 0 \%$ S0UVC CER | 28430 | 01600－3847 |
| A 3 cisis | 0160－3847 | 9 |  | CAPACITOR FXD， 0 ALIF $+100 \cdots 0 \%$ SOUDC CER | 28480 | 0160－3847 |
| A3C156 | 0160－3847 | 9 |  | CAPACXTGR FXD ． $014 \mathrm{~F}+1000 \%$ 50UDC CER | 28480 | 0160－3647 |
| A3C157 | 0180－1746 | 5 |  | CAPACTTOR－FXD 15UF＋－10\％ZOUDC TA | 56299 | 150D156×9020832 |
| A3C156 | 0160－3847 | ${ }^{*}$ |  | CAPACITOR FXD ．O1UF $+100 \cdots 0 \%$ SOUDC CER | 28480 | 0160－3847 |
| A3CR1 | 1901－0040 | 1 |  | DIODE SWITCHING $30 \cup 50 M A$ 2NS DO－35 | 26480 | 1901－6040 |
| A3cre | 1901－0040 | 1 |  | DIODE SWITCHING 30V 50MA 2NG DO－35 | 26460 | 1901－0040 |
| Abcrs | 1901－0518 | 8 |  | DIODE－SM SIG SCHOTTKY | 28490 | 1901－051日 |
| Ascri 4 | 1901－0510 | 9 |  | DJ．ODE－－SM SIG SCHOTTKY | 23480 | 1901－0518 |
| A 3 CLR 6 | 1902－3．3149 | 9 | 2 | DTODE－ZNR 9，0\％U 5\％DO－35 PD＝ 4 W | 28480 | 1902－3149 |
| ABCR 7 | 1902－3030 | 7 | 3 | DIODE－－2NR 3．01U $5 \%$ DO－7 PDE， 4 W TC $=-.067 \%$ | 29480 | 1902－3030 |
| A 3 CR8 | 0122－0089 | 5 | 3 | DTODE－VUC 29PF 10\％C3／C2S－MIN＝5 EUR：30U | 04713 | MV119 |
| ABCR10 | 1902－0025 | 4 |  | DIODE－ZNR $1005 \%$ DD 35 PD＝a．4W TC＝$+.06 \%$ | 28480 | 1902－0025 |
| ABCR11 | 1901－0518 | 9 |  | DIDDE SM SIG ECHOTTKY | 28480 | 1901－051日 |
| AJCRIE | 1701w0518 | ${ }^{6}$ |  | DIODE－－SM SIG SCHOTTKY | 294880 | 1901－0516 |
| A3CR101 | 1906－0207 | 2 | 1 | DIODE MATCHED | $\begin{array}{r} 28490 \\ 28480 \end{array}$ | $\begin{aligned} & 1906-0207 \\ & 1901-0535 \end{aligned}$ |
| ASCR102 A | $1901-0535$ $1901-0535$ | 9 |  | DIODE－SM SIG SCHOTTKY DIODE－SM SIG SCHOTTKY | $\begin{aligned} & 29480 \\ & 29480 \end{aligned}$ | $1901-0535$ $1901-0535$ |
| Al3CR103 | 1901－0535 | 9 |  | DIODE－SM SIG SCHOTTKY | 29480 | 1901－0535 |
| ${ }^{\text {A }} 3 \mathrm{~J} 1$ | 1251－6567 | 0 | 6 | CONNECTOR 21－PIN M POST TYPE | 28480 | 1251－6567 |
| A 3 SJ 2 | 1258－0141 | ${ }_{8}^{8}$ | 2 | JUMPER－REM | 28480 <br> 28480 | $\begin{aligned} & 1258 \cdots-1141 \\ & 1251-2969 \end{aligned}$ |
| A3，13 A3， | 1251－2969 | 8 |  | CONNECTOR－PHONO SINGLE PHONO JACK；DIP | 28480 28480 | $1251-2.969$ $1251-2969$ |
| A335 A35 | $1251 \cdots 2969$ $1251-2969$ | 8 |  | CONNECTOR－PHONO SINGLE PHONO JACK；DIP | 28480 20480 | $1251-2989$ $1251-2969$ |
|  |  |  |  |  |  |  |
| ${ }^{\text {A }} 337$ | 1251－2989 | 8 |  | CONNECTOR－PHONO SINGLE PHONO JACK；DIP | 28480 | 1251－2969 |
|  | $1251-2969$ $1251-2969$ | 8 8 8 |  | CONNFETOR－PHONO GINGLE PHDNO JAEK；DIP CONAECTOR－PHONO SINGLE PHONG JACK；DTP | 28480 28480 | $1251-2969$ $1251-2969$ |
|  | $1251-2969$ $1251-2969$ | 8 <br> $B$ |  | CONAECTOR－PHONO SINGIE PHONG JACK；DTP CONNECTOR PHONO SINGLE PHONO JACK；DIP | 28480 23460 | $1251-2969$ $1251-2969$ |
| A3．T11 | 1251－2969 | 8 |  | CONNECTOR PPHONO SINGLE PHOND JACK；DIF | 28480 | 1251－2969 |
| A3．J15 | $1251-2967$ $9100-3551$ | － |  |  |  |  |
| A3L1 | $\begin{aligned} & 9100-3551 \\ & 9100-1791 \end{aligned}$ | 5 | 1 14 | Coil－MId 1uH $5 \%$ Q＝ 50 <br> INDUCTOR 290NH 20\％．33DX． 375 E G | 28480 28480 | $\begin{aligned} & 9100-3551 \\ & 9100-1791 \end{aligned}$ |
| A3L ${ }_{\text {A }}$ | $9100-1791$ $9140-0210$ | 1 | 14 5 | INDUCTOR 290 NH $20 \%$ ，33DX．37SL．G | 28480 28480 | 71001791 $9140-0210$ |
| A ${ }^{\text {a }}$ L． 4 | 9140－0210 | 1 |  | INDUCTOR RF－CH－MLD 1000 C 5\％，166DX，305LG | 23480 | 9140－8210 |
| A3LS | 9170－0894 | 0 | 4 | CORE－SHIELDING BEAD | 23480 | 9170－0894 |
| A31． 6 | 9140－0210 | 1 |  | INDUCTOR RF－CH－MLD 1000 H 5\％．16GDX，3E5LG | 28480 | 9140－0210 |
| A3L．${ }^{\text {c }}$ | 9140－0210 | 1 |  | INDUCTOR RF－CH MLD 1 DOUH $5 \%$ ，166DX．3BSLG | $28480$ | 9140－0210 |
| A 31.18 | $9100 \cdots 3560$ | 6 | 1 | INDUCTOR RF－CH－ML． 5 ，6UH $5 \%, 166 \mathrm{DX}$ ． 385 LG | 28480 | 910003560 |
| A3L． 9 | 7140－0253 | 2 | 1 | INDUCTOR RF－CH－TALD 300NH 3\％， 166 DX ．385LG | 28480 | 9140－02゙u3 |
| A 3128 | 9100－1629 | 4 | 1 |  | 28430 28480 | $9100-1629$ $9100-3551$ |
| A31． 001 | 9100－3551 | 5 | 1 | INDUCTOR RFF－CH－MLD 1 UH 5\％． 166 DX ，395LG | 28480 | 9100－3551 |

[^5]＊Indicates factory selected value

Table 6-3. Replaceable Parts

| Reference Designation | HP Part Number | $\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$ | Qty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A ${ }^{\text {a }}$ L 101 | 2100-1791 | 1 |  | INDUCTOR 290NH $20 \%$, 23DX. 375 | 28490 | 9100-1791 |
|  | 9100-1791 | $\pm$ |  | INDUCTOR 290 NH $20 \%$.23DX $375 L$ g | 29480 | 9100-1791 |
| A3L. 103 | 7140-0265 | b | 2 |  | 20430 | 9140-0265 |
| A ${ }^{\text {a }}$ L 104 | 9100-3852 | 7 | 2 | INDUCTOR RF-CH-MLD 1 , 5UF $5 \%$, 166idx, 385LG | 28480 | 9100 $9140-0349$ |
| A3L. 103 | 9140-0349 | 7 | 2 | INDUCTOR RF-CH-MLD $1.1 \mathrm{UH} 5 \%$, 166bx, 385L.G | 28480 | 9140-0349 |
| A3L. 106 | 9140-0265 | 6 |  | INDMCTOR RF-CH-MLD $1.6 \mathrm{UH} 5 \% .166 \mathrm{DX} .385 \mathrm{SLG}$ | 284830 | 9140.0265 |
| A3L. 107 | 9100-03339 | 3 | 4 | INDUCTOR (MISC ITEM) | 29480 | 91000.0539 |
|  | $9140 \cdots 0142$ | 8 |  |  | 28300 | 9140-0142 |
| ${ }^{\text {A 3 L }}$ A 1111 | 7100-3315 | 9 | 2 |  | 28480 28480 | $7100-3315$ $8100-3315$ |
| A31.112 | 9100 -3315 | 9 |  |  | 2.8480 | 9100-3315 |
| A31. 1173 | 9100-3546 | 8 | 4 | INDUETOR RF-CH-MLD 1 , 3UH 5\%, 155DX, 375LG | 284800 | 7100-3546 |
| A35.114 | $9100 \cdots 3546$ | 8 |  | INDUCTIR RFF-EHMMLD 1.3UH 5\% , 135DX, 375LG | 28480 | 9100-3546 |
| A 3 L. 116 | $9100 \cdots 3546$ | 8 |  | INDUCTOR RF-CH MLID $1.3045 \%, 155 D X, 375 L . G$ | 29480 | 9100-3546 |
|  | 91003846 $9100-1791$ | 8 |  |  | 26480 28480 | 9100-3546 |
| A3t. 152 | 9100-053\% | 3 |  | Inductor (misc item) | 28480 | 9100 0539\% |
| A.3L. 15.5 | 9140-0210 | 1 |  |  | 28480 | 9140-0210 |
| A3MP1 | $03325 .-20601$ | 3 |  | SHIELD, Top | 28480 | $03325-20601$ |
| АЗзP3 | 03325-20602 | 4 |  | SHIELD, BOTTOM | 28480 | 03325-20602 |
| A3mps | $033325 \cdots 04101$ | 4 | 1 | COUER, 1 | 28480 | $03325 .-04101$ |
| A3MP6 | 03325-04103 | b | 1 | cover, 3 | 23480 | $03325 \cdots 04103$ |
| $A^{\text {A }}$ A 2 | 1251-4822 | 6 | 3 | CONNECTOR 3-PIN M POST TYPE | 23480 | 1251-4822 |
| A3Q | 1053-044日 | 0 | 0 |  | 04713 | mpsher |
| A 3 922 | 1955-0081 | 1 | 6 | TRANSISTOR J--FET N-CHAN D-MODE SI | 28480 | $1855-0001$ |
| A363 | 1053-0069 | 5 |  | TRANSISTOR PNP 2N4917 ST PD=200MW | 0726,3 | $2 \mathrm{~N}_{4917}$ |
|  | $1854-0092$ $11954-0215$ | 2 | 1 | TRANSISTOR NPN SI PD=200NW $\mathrm{FT}=608 \mathrm{MH} / \mathrm{Z}$ | 28490 04713 | 1254-0092 |
| ค 3 Q6 | 1954-0215 | 1 |  |  |  |  |
| A3Q101 A 3 Q102 | $1853-0089$ $1853-0087$ | $\stackrel{5}{5}$ |  |  | 07263 | $\begin{aligned} & 2 N 4917 \\ & 2 N 4917 \end{aligned}$ |
| A3R 1 | 068:3-4705 | 8 | 37 | RESISTOR 475\% , 2EW FC TC $=-400 /+500$ | 01121 | Cr.4705 |
| AJTR | 0698-3432 | 7 | 2 | RESTSTOR 26.1 $1 \% .125 \mathrm{~W}$ F $T C=0+\cdots 100$ | 03808 | PMESE-1/8-70-26R1-F |
| A3R3 | 0757-0398 | 4 | 3 | RESISTOR $751 \%$, 125 W F TC $=0+\cdots 100$ | 2.4546 | C4-1/9-70-7500-F |
| A 3 R6 | 0603-2225 | 3 | 22 | RESISTOR 2. $2 \mathrm{~K} 5 \%$, 25W FC TC $=-400 /+700$ | 01121 | CE2225 |
| A ${ }^{\text {P }}$ 7 7 | 0698-3439 | 4 | , | RESISTOR $1781 \%$, 125w F TC=00+-100 | 24546 | C4. 1/8-70 -170R-F |
| A380 | 0757-83977 | 3 | 5 | RESISTOR 68. 1 1\%, 125W F TC $=0+100$ | 24546 | C4- $1 / 8-70-6881-F$ |
| A3199 | 06883-4715 | 0 |  | RESISTOR 470 5\%, 25W FC TCem-400/ 6000 | 01121 | C14715 |
| A3R10 | 0757-0404 | 0 | 12 | RESISTOR $1001 \%$. 125 SW F TC $=0+100$ | 24546 | CA-1/E-T0-102-F |
| ${ }_{\text {A AR11 }}$ | 0\%57-0397 | 3 |  | REEISTOR 68.1 $1 \%$, 12EW F TC $=0+100$ | 24.546 | C4-1/9-T0-68R1-F |
| A3R1? | 0683-1245; | 5 | 1 | RESISTOR 120K $5 \%$, 25W FC TC $=-300 /+900$ | 01121 | CB1245 |
| AJR 13 | 0683-4725 | 2 |  | RESISTOR $4.7 \mathrm{~K} 5 \%$, 25W FC TE; - $400 / 4700$ | 01121 | CP4725 |
| A 3 R 14 | 0683-1025 | 9 |  | RESISTOR 1K $5 \%$, 25w FC, TC=-400/4600 | 01121 | C81025 |
| A 3 R12 16 | 0683-1025 | 9 |  | RESISTOR $1 \mathrm{~K} 5 \%$, 25w FC TC $=-400 /+600$ | 01121 | Cal 025 |
| A3R17 | 06133-2225 | 3 |  | RESISTOR 2.2K 5\% .254 FC TC $=-400 /+700$ | 01121 | cbezes |
| A3R18 | 0\%57-0442 | 9 | 13 | RESTSTOR $10 \mathrm{~K} 1 \%$, 1255 F TC=0 $0+-100$ | 24545 | C4 ${ }^{\prime \prime 1 / 8-70-1002-F ~}$ |
| A3R19 | 0683-1045 | 3 |  | RESISTOR $100 \mathrm{~K} 5 \%$, 25W FC TC $-3-400 /+800$ | 01121 | CB1045 |
| A 3 R21 | 0683-1025 | 9 |  | RESISTOR 1K 5\%, 25W FC TC= $=400 /+600$ | 01121 | C61025 0 |
| A3rze | 8757-0279 | - | 6 | RESISTR $3.16 \mathrm{~K} 1 \%$. 125 WW F TC $=0+6100$ | 24546 | C4-1/E-70-3161-F |
| A3R23 A 2824 | 07557-0438 | 3 | 11 |  | 2,4546 01121 |  |
| A3R24 | 0683-2225 | 3 |  | RESISTOR 2, 2 K 5\% .25W FC TD $=-400 /+700$ | 01121 | C82225 |
| A3R26 | 0757-0203 | 6 |  |  | 24546 | C4-1/8-70-2001-F |
| A3R2\% | 0757-0442 | 9 |  | RESISTOR 10K $1 \%$, 125W F TC $=0+\cdots 100$ | 24546 | C4-1/8-70-1002-F |
|  | 06999.4490 | 9 |  | RESISTOR 29.4K 1X , 125W F TC=0t-100 | 24546 | C4.1/8~T0-2942-F |
| A3R29 | 0696-3154 | 0 | 2 | RESISTOR 4. $22 \mathrm{~K} 1 \%$, 125W F TC=0 0 + 100 | 245446 | C4-1/8-T0-422: -F |
| A3R30 | 2100-3789 | 4 | 2 | RE.SISTOR-TRMR 20K $10 \%$ C TOP - ADV 17 TRN | 28480 | 2100-3789 |
| A 3 R32 | 0683-1025 | 9 |  | RESISTOR 1K $5 \%$. 255 FCC TC $=-400 /+600$ | 01121 | CE1025 |
| A31233 | 2100-3789 | 4 |  | RESISTOR -TRMR 20K 10\% C TOP --ADJ 17.-TRN | 294880 | $2100-3789$ 0659 |
| A3R33 | 0699-0171 | 1 | 1 |  | 28480 | $0659-0191$ 0699.0189 |
| A 3 R 36 A 3 R | $06.997-0189$ $8683 \cdots 753$ | $\stackrel{7}{8}$ | 1 | RESISYOR RESISTOR / \% | 28480 01121 | $\begin{aligned} & 0699-0189 \\ & \text { CB7535 } \end{aligned}$ |
| A3R37 | 8683-7535 | 8 | 1 | RESISTOR 75K 5\% .25W FC TC $=-400 /+600$ | 01121 | C8753s |
| A 3 R 38 | $0698-0084$ 07570274 | 9 | 2 |  | 24546 <br> 24546 <br> 154 | $\begin{aligned} & C A-1 / 8-T 02151 F F \\ & C 4-1 / 8-T O-1211-F \end{aligned}$ |
| A3R29 | 0757.-0274 | 5 | 1 | RESTSTOR 1, $21 \mathrm{~K} 1 \%$, 125W Fr TCu0+-100 | 24546 | C4~1/8- T0-1211~F |
| A 31241 | 0683-1025 | 9 |  |  | 01121 |  |
|  | - $\begin{aligned} & 0757-0407 \\ & 0698-3155\end{aligned}$ | 6 1 | 2 |  | 24546 24546 |  |
| ASR44 | 0690-3155 | 1 |  | RESISTOR 4.64K $1 \%$, 12EW F TC $=0.4 \cdots 100$ | 24.546 | C4-1/8- T0-4641才 |
| A.3R 45 | 06,98-3156 | 2 | 6 | RESISTOR 14.7 K 1\% , 12SW F TC=0+-100 | 24546 | C4-1/8-T0-1472-F |
| A3R4S | 0690-3156 | 2 |  | RESIGTOR 14.7 K 1\%, 125 W F T TCOO $0 \cdots 100$ | 24546 | C4-1/8-T0-1472-F |
| A 3 R 47 | $06883-4705$ | 8 |  | RESISTRR $475 \%$, 2 SW FC TEA $-400 /+500$ | 01121 | C8.4705 |
| A3R4B | 06813-4715 | 0 |  | RESTETOR $4705 \%$. 25 W FC TC $=-480 /+600$ | 01121 | C84715 |
| A 3 R 49 A 3 R 54 | $0683-1035$ $0757-10453$ |  |  |  | 01121 24546 |  |
| A3R54 A3R55 | -0757-0453 | 2 | 11 | RESISTOR 30.1 K RESISTOR 4, 99 K $1 \%$ | 24546 24546 | C. ${ }_{\text {c }}$ |
| A3R56 | 0683-1025 | 9 |  | RESISTOR 1 K S\% .2SW FC TC $=-400 /+600$ | 01121 | Cbtozs |
| A3R ${ }^{\text {a }} 7$ | 0698-32.79 | 0 |  | RESTSTOR $4.99 \mathrm{~K} 1 \%$, 12SW F TC=0 $+\cdots 100$ | 24546 | C4*1/8-T0 - $4991-\mathrm{F}$ |

[^6]Table 6－3．Replaceable Parts

| Reference Designation | HP Part Number | $\begin{gathered} C \\ D \end{gathered}$ | Qty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A ${ }^{\text {a }}$ S 56 | 0679－0192 | 2 | 1 | RESISTOR 3，B94K，1\％－ 125 SW F TCO $=0+25$ | 28480 | 0699－0192 |
|  | $0683-1025$ <br> $2100-3284$ | 9 |  |  | 01121 39097 | $\begin{aligned} & \text { cay } 025 \\ & 3022010103 \end{aligned}$ |
| A3R60 A 3 ¢ 61 | $2100-3286$ $06830-4705$ | 6 8 8 | 1 |  | 39297 01121 | $\begin{aligned} & 3292 \mathrm{w}-1 \cdots 103 \\ & 684705 \end{aligned}$ |
| A3R6E | － 07575 | 9 |  |  | 2.4546 | C4＊1／8－70－1002－F |
| A3R63 | 0698－3156 | 2 |  | RESISTOR $14.7 \mathrm{~K} 1 \%$ ，125w F TC＝0－－100 | 24546 | C4．1／8－50－1472－F |
| A 3 R 6.4 | 9670－4437 | 4 | 1 |  | 24546 | C4 1／8－T0－2941．${ }^{\text {c }}$ |
| A 3 3R66 A 3 P6 | $0757-0436$ $0676-4476$ | 1 | 1 | RESTSTOR 4.32 K RESTSTOR R | 24546 34546 |  |
| A 3867 A 31268 | $0676-4476$ $3100-3207$ | 3 1 | 1 |  | 24546 20430 | C．1／6－70－1072－F 2100－3207 |
| A3R69 | 0696－3136 | 6 | 1 |  | 24546 | C4．1／8－T11－1782．F |
| A 3 R20 | 0698．3497 | 4 | 1 | RESTSTOR 6．04K 1\％，12SW F TC＝0 +100 | 2 2asing | C4．18－T0－604R－F |
| A3R72 | 0683－47315 | 9 |  | RESTSTOR $475 \%$ ． 25 w FCC TCW $400 / 4500$ | 01121 |  |
| A 3 P73 A 3 P76 | $06,98-3442$ $0683-4705$ | 9 | 1 |  | 24546 0.1121 |  |
| A3R77 | 06983－4402 | 3 | 4 | RESTSTOR 97．6 $1 \%$ ，125W F rceote 100 | 24546 |  |
| A3R76 | 0670－4402 | 3 |  | RESISTOR $97.61 \%, 125 W$ F TCenar 100 | 24546 | C．4－1／B－T0．97R 6 F ${ }^{\text {c }}$ |
| A3R79 | 0696－3279 | 0 |  | RESTETOR 4．99k $1 \%$ ，125W Tr TCmot－100 | 2.45 .46 | C．1／8－70－4991－F |
|  | 069335581 $0698-3681$ | 7 | 2 |  | 24546 24546 |  |
| A38 32 | 0757－0273 | 4 | 7 | REGIGTOR 3．01K 1\％，125w F TC＝0＋100 | 24546 | C4 1／8－70－3011． F |
| A3R83 | 0757．0273 | 4 |  | RESISTOR 3．01K $1 \%$ ，12SW＋TCmotico | 24346 | CA． $1 / 8 \cdots \mathrm{~T}$－ $3011 . \mathrm{F}$ |
| A3RE4 | 0757－0273 | 4 |  | RESTSTOR 3．01K $1 \%$ ，125W FF TC＝0\％ 100 | 24546 | C4，1／8－T0－3011－${ }^{\text {co }}$ |
| A3R ${ }^{\text {as }}$ | 0698－4402 | 3 |  | RESISTOR $97.61 \%$ ，125W F TCE＝0＋－100 | 24546 |  |
| A3RB6 | 0698－3157 | 3 | 1 | RESISTOR 19．6K 1\％． 125 NF FCmon－100 | 24546 | C4－1／8－70－1962－ $\mathrm{F}^{\text {c }}$ |
| A3887 | 0683－1025 | 9 |  | RESTSTOR RESTSTOR R | 01121 01121 | cbueas |
|  | $0693-2225$ $0698-4402$ | 3 3 3 |  |  | 01121 24546 |  |
| A3R91 | 0698－4467 | 3 | 1 | RESMSTOR 1.05 K 1\％$\%$ ， 125 L F TC $=0+-100$ | 24546 | C．4－1／8－T0－1051－F |
| A 3 R92 | 06．6331025 | 9 |  | RESTGTOR $1 \mathrm{~K} 5 \%$ ． 25 SW FC TC $=-400 /+6010$ | 01121 | CE102s |
| A3R93 | 6693－4705 | a |  | RESISTOR $475 \%$ ， 255 FFCT TC $=-400 / 2500$ | 01121 | C64705 |
| $A^{3} 3 \mathrm{R} 101$ | $06,83 \cdots 4715$ | 0 |  |  | 01121 |  |
| A ${ }^{\text {a }} 10102$ | 3757－0291 | 6 | 1 |  | 19701 01121 |  |
| A 3 R 103 A 3 104 | $\begin{aligned} & 0683-3325 \\ & 0757-0397 \end{aligned}$ | 6 | 6 |  | $\bigcirc 24546$ |  |
| A3R 106 | 0698－4435 | 2 | 2. | RESISTOR $2.49 \mathrm{~K} 1 \%$ ，125W F TC $=0+\cdots 100$ | 24546 | C4－1／8－T0－2491－F |
| A3R107 | 0699－3156 | 2 |  | RESTSTOR $14.7 \mathrm{~K} 1 \%, 125 \mathrm{NFF}$ TC＝0．4－100 | 24546 | C4－1／8－70－1472m |
| A3R10日 A 3 R107 | $0698-4037$ $0757-8279$ | ， | 2 | RESISTOR RESIETOR 3． | 24546 24546 245 | C4－1／8－T0－46R4－FiF |
| A 3 R19？ A Skit | －0757－8279 | ， |  |  | 24546 24546 | C4．1／8－10－3161．F |
| A3R112 | 0757－0407 | 6 |  | RESISTOR 200 1\％．125w F TC＝0＋－109 | 24546 | C4－1／a－70－201－F |
| A 3 R1：3 | 0698－3444 | 1 | 4 | RESISTOR 316 1\％，125W F TC＝0＋ 100 | 23.546 | CA 1／8－Tfl－316R－F |
| A3R114 | 0690－3444 | 1 |  |  | 24546 29460 | C4－1／日－T1－3168－ $2100-056 \mathrm{e}$ |
| A3R115 A3R116 | 2100－0568 | 5 | 1 |  | 29460 19701 | MF4C1／8－T0．1580\％ |
| A3R 117 | 0698－3444 | 1 |  | RESISTOR $3161 \%$ ． 1254 F TCE0 $0+\cdots 100$ | 2AS546 | C4．1／8－70－31／R F |
| A3R119 | 06989－3444 | 1 |  |  | 24546 24546 |  |
| A3R119 | 0757－0275 | 6 | 2 | RESISTOR 113 RESISTOR 196 1\％ R | 24546 24546 2.546 | $\begin{aligned} & C 4-1 / \theta-70-113 R-F \\ & 64-1 / 8-T 0-196 R-F \end{aligned}$ |
| A SR129 A 3121 | 0699\％3440 | 7 | 3 |  | 24546 24546 |  |
| A 3 SR 122 | 0757－0．397 | 3 |  | RESISTOR 68．1 $1 \%$ ，125w F TC $=0+100$ | 24546 | C4－1／3－70－68R1－F |
| A3R123 | 0757－9275 | 6 |  | RESSISTOR $1131 \%$ ，12SW F TC： $0+-100$ | 24546 | C4－1／8－T0－113R－F |
| A3R151 | 0757－0397 | 3 |  |  | 24546 | C4－1／8－T0－68R1－F |
| A3R153 | 0683－1025 | 9 |  | RESISTOR 1K 5\％．254 FC TC $=-400 /+600$ | 01121 | ${ }^{\text {CS1 }}$ |
| A．SR154 | 0683－1025 | 9 |  | RESISTOR $1 \mathrm{~K} 5 \%$ ．25\％FC TC $-7-400 /+600$ | 01121 | C81025 |
| A 3 R 156 A 15157 A 158 | $\begin{aligned} & 0683-1015 \\ & 0683-4795 \end{aligned}$ | 7 |  |  | 01121 | $\begin{aligned} & \operatorname{ces} 015 \\ & \operatorname{co4\% } 55 \end{aligned}$ |
| A3R 18日 | 0699 34339 | 4 |  | RESISTOR $1781 \% .125 \omega$ \％TC $=0+-100$ | 24546 | CA－1／8－T0－17日R－F |
| A3R159 | 0683－2225 | 3 |  | RESISTOR 2．2K 5\％．25W FC TC $=-400 / 1700$ | 01121 | crazes |
| A3R160 | 0757－0276 | 7 | 3 | RESTGTOR $61.91 \%$ ，12SW F TCO $=0+-100$ | 24546 | 64 1／8－10－6182－F |
| A3R161 | 0757－0276 | 7 |  | RESYSTOR $61.91 \% .125 W: T C=0+\cdots 100$ | 24546 | C4－1／8－70－6192．F |
| A3Ti A3T | $\begin{aligned} & 9100-4038 \\ & 06552-6044 \end{aligned}$ | 5 | 1 | trangrormer head core；with ct pri a sec TRANS 6 TURNS | 28480 28480 | $\begin{aligned} & 9100-4038 \\ & 06552-6044 \end{aligned}$ |
| A3L1 A3U A | $1820-1991$ $1020-0629$ | 1 | $1{ }_{10}^{1}$ |  | 01295 | SN74LS390N <br> 5N748112N |
| A 303 | $1820 \cdots 0321$ | 9 | 2 | IC COMPARATOR GP TO 99 PKG | 01295 | SN72710L |
| A304 | 1020－1199 | 1 | 5 | IC INU TTL L－S HEX 1 －INP | 01275 | GNT74Lsinf |
| A3U5 | 1320－0693 | a | 6 | IC FF TTL S D－TYPE POE－EDGE－TRIG | 01295 | SN74874N |
| A 306 A 3157 | $1820-8683$ $1920 \cdots 1924$ | 6 | 3 1 | IC JNU TTL S HEX IC INU TNP INL S HEX | 01295 18324 | SN＂ $75 \mathrm{SO4N}$ NETGKN |
| ${ }_{\text {A }}$ | 1826－0043 | 4 | 2 | It OP AMP CP TO．P9 PKG | 31.585 | CA307T |
| A3U9 | 1920－1569 | 8 | 3 | IC FFR TTL LS EUS quad | 01295 | SN741－5125AN |
| A3U10 | 1820－1195 | 7 | 4 | IC FF TTL LS D－TYPE．POS－EDEE－TRTG COM | 01295 | 8N74L．8175N |

See introduction to this section for ordering information
＊Indicates factory selected value

Table 6-3. Replaceable Parts


See introduction to this section for ordering information
*Indicates factory selected value

Table 6-3. Replaceable Parts

| Reference Designation | HP Part Number | $\left.\begin{aligned} & C \\ & D \end{aligned} \right\rvert\,$ | Oty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| А 5 K 511 | 5041-0921 | 7 | 1 | KEY CAP - DCDFFFSET | 28480 | 5041 - 09921 |
| ASkS12 | 5041-0451 | B | 1 | KEYCAP - BLUEPIPE | 29480 | 5041-045: |
| ASkS13 | 5041-0987 | 5 | 1 | KEY CAP Store | 29480 | 5041-0987 |
| ASkG14 | 5041-0017 | 0 | 1 | KEY CAP-7 | 28490 | 5041-0617 |
| А А5kS1S | 5041-0818 | 1 | 1 | ЗEY CAP - B | 26480 | 5041-0918 |
| ASK 516 | 5041-0916 | 9 | 1 | KEY CAP-6 | 28490 | 5041-06316 |
| A5k517 | 5041-0925 | 1 | 1 | KE.Y CAP -MHZ YOLT | 26480 | 5041-0925 |
| A'5kS18 | $5041 \cdots 0810$ | 3 | 1 | KEY CAP RECALL | 28480 | 5041~0910 |
| AEKS319 | 5041-0814 | 7 | 1 | KEY CAP-4 | 2.8460 | 5i041-0814 |
| ASkS20 | 5042-0815 | 8 | 1 | KEY CAP-5 | 28480 | 5041-0815 |
| A5k322 | 5041-0926 | 2 | 1 | KEY CAP-KHZ MY | 283480 | 5041-0926 |
| A 5 KS 23 | 5041-0946 | 6 | 1 | KEY CAP Clear | 28480 | 5041-0946 |
| AEKS24 | 5041-01811 | 4 | 1 | KEY CAP-1 | 28480 | 5041-0011 |
| A5k52S ASK 526 | $5041-0912$ $5041-0813$ | 5 6 | 1 | KEY CAP-2 KEY CAP | 29480 28480 | $5041-0812$ $5041-0813$ |
| Askge6, | 5041-0813 | 6 | 1 | KEY CAP ${ }^{\text {ch }}$ | 28480 | $5041-0813$ |
| AEMK 527 | 5041-0927 | 3 | 1 | KEE CAP-HZ URME | 29480 | 5041-10927 |
| АธK52日 | 5041-0759 | ${ }_{3}$ | 1 | KEY CAP ${ }^{\text {M }}$ DAGG | 283830 | 5041-0758 |
| ASkS29 | 5041-0819 | 2 | 1 | KEY CAP - 0 | 28480 | 5041-0019 |
|  | 5041-19808 | 5 | 1 | KEY CAP PERIOD | 20480 | 5if41-00089 |
| AELKS31 | 5041-0929 | 5 | 1 | KEY CAP-SEC | 28430 | 5041 -092.9 |
| A5ks32 | 5041-11928 | 4 | 1 | KEY CAP-DEG | 28480 | 5041-0929 |
| A ${ }^{* 5} \mathrm{~K}$ 人333 | 5041-075 | 6 | 3 | KEY ARROW | 28490 | 5041-0756 |
| A5K334 | 5041-0756 | 6 |  | KEY ARROW | 28480 | 5041100756 |
| AEKK3 ASKS | $5041 \cdots 0922$ $5041-0722$ | 9 | 2 | KEY CAP-LEFT ARO | 28490 | 5041-0922 |
| ABkS36 | 5041-0722 | B |  | KEY CAP-LEFT ARO | 28400 | 5041-0922 |
| AEKS37 | 5041-0318 | 6 | 5 | LK CAP PTY GRAY | 28480 | 5041-0313 |
| A5k336 | 5041-0318 | 6 |  | LK CAP PTY GRAY | 28460 | 5041-0318 |
| AEK539 | 5041-0318 | 6 |  | LK CAP PTY GRAY | $2 ¢ 480$ | 5041-0319 |
| A5KS340 ASKS | $5041-0318$ $5041-0318$ | 6 |  | L.K CAP PTY GRAY | 28480 | $55041-0318$ |
| A5K841 | 5041-0318 | 6 |  | LK CAP PTY GRAY | 28480 | 5041 \% 0318 |
| ASK54: | 5041-0410 | 7 | 1 | KEYCAP-EDDNYPTPE | 28480 | 5041-0416 |
| A5K543 | 5041-0285 |  | 1 | KEYCAP-PEARILPTPE | 28480 | 5041-020.5 |
|  | 5041-0944 | 4 | 1 | KEY CAP PWR | 23480 | 5041-0944 |
| ASt 1 | 9100 $\cdots 333$ | 2 | 2 | INDUCTOR 25UH 10\% .31 | 28480 | 9100-33.34 |
| ASMP 1 | 4040 1001 | 3 | 1 |  | 28480 | 4040-1001 |
| ASMP2 | $4040 \cdots 1307$ | 2 | 1 | REFLECTOR | 28480 | 4040-1307 |
| AEMP 3 | 08505-40006 | 2 | 3 | LED ANIN GD | 20480 | 08505-40006 |
| A591 | 1953 0016 | 9 | $\square$ | TRANSTSTOR PNF St T0-92 PD:300M4 | 29480 | 58530016 |
| ASNE | 1353-0016 | E |  | TRANSISTOR PNF SI TO-92 PD=300MW | 2 E 480 | 1853-01016 |
| Asta | 1953-0016 | 8 |  | TRANSISTOR PNP ST TO-92 PD=300NW | 28480 | 1553.0016 |
| A594 | 1953-0016 | 8 |  | TRANGISTOR PNP GI TO.92 PD=300MW | 28480 | 185330016 |
| AS $2 \times 5$ | 1353-0016 | 8 |  | TRANGISTOR PNP SI TO-92 PD=300M4 | 2a400 | 18533-0016 |
| A506 | 1853-0016 | 13 |  | 7 TRASISTOR PNP SI $70-92$ Pl $=3300+4$ W | 28480 | 1853-0016 |
| AS07 | 1853-0016 | 8 |  | TRANSISTOR PNP SI TO-92 PD=300\%W | 28490 | 1053-0016 |
| ASQE | 1853--1016 | ${ }^{3}$ |  | TRANSTSTOR PNF ST TO 97. PD=300M1 | 23480 | 1853-0016 |
| A5R 1 | 6683-22005 | 9 | 10 | RESISTOR 22 $5 \%$, 2SW FC TC= $400 /+500$ | 01121 | cresos |
| AERT | 0683. 2205 | 9 |  | RESISTOR 22 5\% .250 FG TC= $-400 /+500$ | 01121 | CE2205 |
| AER3 | 0683-2205 | 9 |  | RESTST0R $225 \%$. 25 F FCC TC $=-400 /+500$ | 01121 | ceasos |
| ASR 4 | 0683-2205 | 9 |  | REGTSTOR 22 5\% 25s FC TC $=-400 / 550$ | 01121 | Cre205 |
| AETRS | 0603-2205 | 9 |  | RESTSTGR 22 5\% .25W FC TC= $-400 /+500$ | 01121 | cre20s |
| ASRG | 0683-2205 | 9 |  |  | 01121 | C82ebs |
| ASR7 | 0683-2205 | 9 |  | RESISTOR 22 $5 \% .250 \mathrm{FC}$ TC\%-400/+500 | 01121 | ceamos |
| ASRE | 0683. 20.05 | 9 |  | RESISTOR 22 5\% 2SW FC TC | 01121 | Cb2205 |
| ${ }_{\text {ASR }}{ }^{\text {ASR }}$ | 0683-1325 | 2 | 3 |  | 01121 01121 | ${ }_{\text {Cbl }}^{\text {Cbas }}$ |
| ASR10 | 17683--1325 | 2 |  | RESI3T0R 1,3K 5\% , 25W FC: TC\% $-400 /+700$ | 01121 | CH1325 |
| ASR 11 | 0683-1325 | 2 |  | RESISTOR $1.3 K 5 \% .25 W$ FC TC $-400 / 4700$ | 01121 | censes |
| Aspres | 0683-1325 | 2. |  | RESISTOR 1, $3 \mathrm{~K} 5 \%$, 25 F FC TC= $400 / 1700$ | 0.121 | Cbli3er |
| AER13 | 0683-1325 | 2 |  | RESISTOR 1.3k 5\% , 2SW F'C, TCx - $400 /+760$ | 01121 | C81325 |
| ASR 14 | 0693-1325 | 2 |  | RESISTOR 1.3 K 5\% , 25W FC TC= $400 /: 700$ | 01121 | CE1325 |
| A51R15 | 0683-1325 | 2 |  | RESISTOR 1.3K 5\% , 2EW FCC TC $-400 / 4700$ | 01121 | 6n1325 |
| AETR16 | 0603-1325 | 2 |  | RESIETOR 1.3K 5\% , 2xW FC, TCw-400/700 | 01421 | Cat325 |
| AER20 | 1910-0135 | 2 | 1 | NETWORK-RES 6-GTP10.0K OHM $\times 5$ | 29480 | $1610-0135$ |
| ABR2 | 1010-616.4 | 7 | 2 | NETWERKK-RES 9 GIP 4.7 K OHIM $\times 8$ | 71637 | CSP 07C07-4725 |
| AERRE | $1810 \cdots 016.4$ | 7 |  | NETWORK-RES 9. SIPA, 7 K OHMM $\times$ ¢ ${ }^{8}$ | 91637 | CST 09607-4723 |
| AsRas | 1810 0055 | 5 | 3 | NE:THORK-RES 9-STP10,0K OHM X B | 28480 | 1810.0055 |
| AS84 | 5060-99436 | 7 | 43 | PUSHILTTON SWITCH P, C. MOUNT | 28480 | 5060.9436 |
| AS32 | 5060.93436 | 7 |  | PUSHELTTON SWITCAI P.C. MOLNT | 29490 | 506.0109436 |
| AS53 | $5060-4436$ | 7 |  | PUSHBUTTON SWITCH: P, ¢, MOENT | 29490 | 506019436 |
| ASESA | 50600.9436 | 7 |  |  | 23430 28490 | $5060-9436$ $5060-9436$ |
| A 595 | 5060 9436 | 7 |  | PUSHCUTRON SWITCH P.C. MOUN | 28490 | 5040-9436 |
| A56\% | 5060 9436 |  |  | pushmut Ton mwiten P.C. Molint | 28480 | 5960-57436 |
| ASS\% | $5060-9436$ | 7 |  | Pusithut Ton sut TCA P.C. MOLNA | 28400 | $50660-9436$ |
| A5S8 | 5060.9436 | 7 |  | Pushelston switch p.Ci, mount | 20480 | 50.0 -9 4.36 |
| AS59 | $5060 \cdots 9436$ | 7 |  | PUSHELUTTON SHTTCH P.C. MOUNT | 28490 | $50611-9436$ |
| A 5510 | 5060-9436 | 7 |  | PUSHEUTTON SWTTCH P, \%, Molnt | 29430 | 5060-9436 |

See introduction to this section for ordering information
*Indicates factory selected value

Table 6-3. Replaceable Parts

| Reference Designation | HP Part Number | $\begin{aligned} & C \\ & \mathbf{D} \end{aligned}$ | Oty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A\$511 | 5060-99436 | 7 |  | PUSHEATTON SUITCH P.C. MOUNT | 28480 | 5060-9436 |
| ASS 12 | 5060-9436 | 7 |  | PUSHDUTTON SUITCH P.C. MDUNT | 28480 | 5060-9436 |
| A5S13 | $50600 \cdots 9.436$ | 7 |  | PUSHIBUTTDE SWITCH P.C. MOLSNT | 28480 | $5060-9436$ |
|  | 5060-9436 | 7 |  | PUSHELUTTON SWITCH P.C. MOUNT | 28480 | 55060-9436 |
| ASS15 | 5060-9436 | 7 |  | PUSHEMTTON SWTTCH P, c. MOUNT | 28480 | 50600-9436 |
| A5S16 | 85060 -9.9436 | 7 |  | PUSHEUTTON SUITCB P.C. MOUNT | 29480 | $5060-9436$ |
| AES1\% | 50600.9436 | 7 |  | PUSHEUTTON SWITCH P.C, MOUNT | 28480 | 50600.9436 |
| ASE18 | 506919.9436 | 7 |  | PUSHBUTTON SWITCH P.C. MOUNT | 28480 | 50600.9436 |
| A 5617 | 5060-9436 | 7 |  | PUSHEUTTON 3WITCH P.C. MOUNT | 28480 | $5060-9436$ |
| ASE320 | 5060-9436 | 7 |  | PUSHEUTTON SUITCH P,C. MOUNT | 28480 | 5060-9436 |
| A5S21 | 5060-9438 | 7 |  | PUSHEUTTON SWITCH P.C. MOUNT | 29480 | 50600-9436 |
| Asse2 | $50600-9436$ | 7 |  | PUSHEUTTON SUITCH F.C. MOLINT | 28480 | 5060 - 9436 |
| A 5323 | 5060-9436 | 7 |  | PUSHEJTTON SWITCH P.C. MSLANT | 28480 | 5060-9436 |
| A5924 | $5060 \cdots 9436$ | 7 |  | PUSHISUTTON SUITCH P,C. MOUNT | 28480 | $5060-9436$ |
| A5SES | $50600-9436$ | 7 |  | PLISHEUTTON SWITCH P.C. MOUNT | 28480 | 5060-9436 |
| A5S96 | 5060-5436 | 7 |  | PUSHZUTTON SWITCH P, C, MOUNT | 28.480 | 5069-9436 |
| A5927 | 5060-9436 | 7 |  | PUSHEUTTON SWITCH P.C. MDUNT | 28480 | 5060-9436 |
| ASS28 | 5060.9 .9336 | 7 |  | PUSHEUTTON SWRTCH P, C. MOUNT | 28480 | $5060 \cdot 9436$ |
| A5829 A5s3a | 5060109436 $5060 \cdots 9436$ | 7 |  | PUSHEUTTON SWITCH P,C, MOUNT | 28480 2 E 480 | 506009436 $5060 \cdots 9436$ |
| ASS31 | 5060-9436 | 7 |  | PUSHEUTTON SWTTCH P,C. MOLINT | 28480 | 5060-9436 |
| A55332 | $50600-9436$ | 7 |  | PUSHEUTTON SWITCH P.C, MOINT | 23480 | 5060 -9436 |
| A5333 | 5060.9436 | 7 |  | PUSLELITTOA SWETCH P, C, MoLint | 213480 | 5060-9436 |
| ASEi34 | 5060 -9436 | 7 |  | PUSHEUTTON SWITCH P, C. MOUNT | 29480 | 50600.9436 |
| A5835 | 5060-9436 | 7 |  | PUSHEIJTTON SWITCH P.C. MOUNT | 28480 | 5060-9436 |
| A5s.36 | $5069 \cdots 9436$ | 7 |  | PUSHEUTTON SWITCH P.E. MOUNT | 29490 | 5060-9436 |
| A58337 | 5060-9436 | 7 |  | PUSHEUTTTON SWI. TCA P, Le, MOUNT | 28488 | $5060-9436$ |
| A5838 | 5060-9436 | 7 |  | PUEHEUTTEN SWITCH P.C. MOUNT | 39480 | $5060 \cdots 9436$ |
| A55837 | 506019436 | 7 |  | PUSHRUTTON SWITCH P, C, MDUNT | 28480 28480 | $5060-9436$ $5060 \cdots 936$ |
| A5540 | 51566 -9436 | 7 |  | PLEMBETTON SWITCH F.C. MOUNT | 28480 | 50601.9436 |
| ASSG41 | 5060-9436 | 7 |  | PUSHBUTTON SWITC: P.C. MDIUNT | 28480 | 5060-9436 |
| A5542 | 5060-9.436 | 7 |  | PUSHEUTTON SWITCH P.C, MOUNT | 28480 | $5060 \cdots 9436$ |
| As5i43 | 5060-9436 | 7 |  | PUSHEUTTTON SWZTCH P, C, MOUNT | 29480 | $5060-9436$ |
| A5 344 | 3101-2441 | 6 | 1 | SWITCH-PB DPDT ALTEG , 5A \% govac | 29480 | $3101-2441$ |
| ${ }^{\text {A }}$ ( 1011 | 1820-1200 | 5 | 2 | YC INU TTE LE HEX | 01295 | SN7 4L.505N |
| A5.1. | 1858 | 5 | 4 | TRANGISTOR ARRAY 16-PIN PLSTE DIP | 13606 01295 | UL_N-2003A SN74LS164N |
| A5L13 A51.4 | $1820-1433$ $1958-0047$ | 6 5 | 3 | IC SHF-RGTR TTL LS R-G SERIAL.-IN PRL-OUT | 131295 13696 | SN74LS164N |
| ASU, ASUS | $1958-0047$ $1820-1200$ | 5 5 |  | TRANSISTOR ARRAY 16 -PIN PLSTC DIF IC INU TTE. LS HEX | 13696 01295 | ULN.2003A |
| A $\frac{5106}{}$ | $1020 \cdots 1433$ | 6 |  | IC SHF-RGTR TTL L.S R-G STCRIAL--IN PRI....-DUT | 01295 | SN74LS164N |
| A5Ll | 1959-0047 | 5 |  | TRANSTSTOR AREAY 16-PIN PLSTC DIP | 13606 | ULIN. 2003 A |
| ASUB | 1920-1568 | 9 |  | IC EFR TTL LS BUS QUAD | 01295 | SN74L.8125AN |
| A 5li? | 1820-1730 | 6 | 6 | IC FFF YTL LS D-TYPE PGS-EDCE-TRIG COM | 01275 | SN741-5273N |
| A5U10 | 1990-.0592 | 5 | 11 |  | 20400 | 5092-7653 |
| ASU11 | 1990-0592 | 5 |  | DISPLAY-NUM-SEG 1 CHAR , $43-\mathrm{H}$ | 28480 | 5082-7653 |
| Asture | 1990-0592 | 5 |  | DISPLAY-NLM-SEG 1-CHAR , 43 - H | 28460 | 5092-7653 |
| A 51013 | 1990-0592 | 5 |  |  | 28480 | 5032-7653 |
| AEL. 14 | 1990-3599 | 5 |  | DISPLAY-NUM SEG 1-CLIAR, 43 H | 28480 | $5082-7653$ |
| A5U15 | 1990.0592 | 5 |  | DISPLAY-NUM-EEC 1-CHAR , 43-H | 28480 | 5082-7653 |
| ASU16 | 1990-0592 | 5 |  | DTSPLAY-NUM-GEE 1-CHAR . 43 - ${ }^{\text {H }}$ | 29480 | $5082-7653$ |
| ASU17 | 1790-0592 | 5 |  | DISPAAY NUM-SEG CHAR 43 - ${ }^{\text {H }}$ | 28480 | $5082-7653$ 5002 |
| AE5U18 | 1990-0592 | 5 |  | DISPLAY-NUM-SEG ${ }_{\text {DIS }}$ 1-CHAR $\cdot 43$ H | 28480 28480 | 5062-7653 |
| ASU19 A5U20 | $1990-0592$ $1990-0592$ | 5 5 |  |  | 28480 28490 | $5082-7653$ $5082-7653$ |
| A5xIJ10 | 1200-8630 | 7 | 11 | SUCKET-IC 14-CONT DIP DIP - SLIDR | 2 BABA | 1200-0638 |
|  | 1200-0639 | 7 |  | SOCKET-TC 14-CONT DIP DTP-SL.DR | 2.5480 | 120000638 |
| ASxu12 | 1200.0638 | 7 |  | SOCKET-IC 14-EONT DKP DIP SLDR | 28480 | 120000638 |
| A $5 \times 013$ | 1200-0636 | 7 |  | GOCKET-IC 14-CONT DIP DIF'..SLDR | 29400 | 1200-0639 |
| A5XU14 | 1200-0638 | 7 |  | SOCKET-IC 14-CONT DTP DIP - Sh DR | 28480 | 1200-0638 |
| AEXU15 | 1200-0639 | 7 |  | SOCKET-XC 14-CONT DIP DIP-..GLDR | 28480 | 1200-0638 |
| A5XU16 | 1200-06338 | 7 |  | SOCKET-IC 14-CONT DIP DIP - SLDR | 23480 | $1200-0638$ |
| A $5 \times 417$ | 1200 | 7 |  | SOCKET-IC 14-CONT DTP DIP--SLDR | 26490 | 1200.0638 |
| A5xU1旡 | 1200-0638 | 7 |  | SOCKET-IC 14-CONT DTP DIP. SLADR | 28480 | 1200-0638 |
| A5XU19 | 12000.0638 | 7 |  | SOCKET-IC 14-CONT DIP DIP.-SLDR | 29480 | $1200 \cdot 0633$ |
| A5x420 | 1200-0630 | 7 |  | SOCKET -IC ta-cont DIF DIP -3LDR | 28480 | 1200-0630 |
|  | $\begin{aligned} & 0624-0229 \\ & 0690-0164 \end{aligned}$ | 7 4 | 10 |  GLREUING FLEX BA-1D NEAA 3 , 019-WALLL | 00000 00000 | grder by decertption OROER BY DESCRIPTION |
|  | 1460-1336 | 4 | 24 | WIREFORM CU BRT -..TIN | 28480 | 1468-1336 |
|  | $\begin{aligned} & \text { 7121-1234 } \\ & \text { JUMPE:R } \end{aligned}$ | 9 |  | LABEL CAUTION 1.925-IN-WD 2.24-IN-LG CJT JUMPER | $\begin{aligned} & 28480 \\ & 29490 \end{aligned}$ | $\begin{aligned} & 7121-1234 \\ & \text { JUMPER } \end{aligned}$ |
| Ab | 03325 669506 | 3 | 2 | COINTROL. ABEEMELIM | 284610 | 033e5-66506 |
| $\mathrm{AGC1}$ | 0160-0978 | 1 | 1 | CAPACTTOR-FXD 1500PF + $+1 \%$ SOQUDC MXCA | 25490 | 016000978 |
| A 6 C : 2 | 0160-3647 | 9 |  |  | 28480 | 0160-3347 |
| A 6 Cl 3 | $0160 \cdots 0.337$ | 6 | 2 | CAPACITOR-FXD $160 \mathrm{PF}+\cdots 1 \%$ SnOUDE MTCA | 28490 | 016000337 |
| A, CA 4 | 0160-0337 | 6 |  | CAPACITOR-FXD 160PF + $1 \% 30 \mathrm{OVDC}$ MICA | 28430 | 016.0-01337 |
| A6C5 | 0160 -3847 | 9 |  |  | $2 \mathrm{E4} 30$ | 0160-3847 |

[^7]Table 6-3. Replaceable Parts

| Reference Designation | HP Part Number | $\begin{aligned} & C \\ & D \end{aligned}$ | Oty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AbC6 | 0180-9228 | 6 |  | CAPACITOR-FXD E2UF-10\% 15UDC TA | 56237 | $1500226 \times 9015122$ |
| A60. 7 | 0160 33347 | 7 |  | CAPACTTOR-FXD , OXUF $+100-0 \% 50 \cup D C$ CLE | 28490 | 018.0-38447 |
| figce 0 | 1116.0-3847 |  |  | CAPACITOR FXD , DIUF $100 \cdots 0 \% 50 \cup D C$ CER | $2 \mathrm{B4E0}$ | 0150-3847 |
| A6C24 | 0160-3847 | 9 |  | CAPACITOR-FXD . OXUF +100\%0\% SOUDC CER | 29480 | 0160.3847 |
| norees | 0160.3947 | 7 |  | CAPACITOR-FXD , O1UF +100\%0\% SOVDC CER | 23.480 | 0160-3847 |
| AbLe3 | 6160 -3047 | 9 |  |  | 28480 | 0160.3847 |
| Abrich | 0160-3047 | 9 |  | CAPACITOR - $\times$ XD , 01UF +100-0\% SDUDC CER | 29460 | $0160-3847$ 0160.31347 |
| A6CLes | 6160-3947 | 9 |  | CAPACITOR FXD . 014 C +100-0\% SOUDC CER | 28490 28430 | $01600 \cdot 31347$ $0160-3847$ |
| Ascab A 4 C27 | $1160-3847$ $0160-3947$ | 9 |  |  | 28430 28490 | $0160-3847$ $0160 \cdot 3847$ |
| A6027 | 0160-3947 | 9 |  | CAPACITOR FXD , 01JF +100 0\% 50VDC EER | 38490 | 0160 3847 |
| A6C38 | 4160-3847 | 7 |  | CAPACTTOR FXD . $010 \mathrm{~F}+10000 \mathrm{50VDC}$ CER | 28480 | 0160-3847 |
| A6C29 | 02160-3947 | 9 |  |  | 2a4en | 016003847 |
| A 6,530 | $0160 \cdot 304 \%$ | 7 |  | CAPACITOR-FXD . O1UF : 100 - $0 \%$ SOUDC CER | 26480 | 016003847 |
| A COS | 0160-3947 |  |  | CAPACXTOR FXD, 01UF +1000\% S0UDC CER | 29480 28480 | $0160-3847$ $0160-3047$ |
| A6C32 | 1160-3847 | 7 |  | CAFACITGR-FXD, 01UF +100-0\% SGUDE CER | 28483 | 0160-3047 |
| ${ }^{\text {A6[C3 }} 3$ | 0160-3847 | 9 |  | CAPACTTOR FXD , $014 \mathrm{~F}+10000 \%$ SOUDC CLE | 28480 | 0160.3847 |
| ACCL3 4 | 0160-3847 | 7 |  | CAPACTTOR-FXD . 014 F 1100.0\% EDUDC: CER | 29430 | 0160-3047 |
| A6C.3S | 0160-3947 | 9 |  | CAPACXTOR FXD . $014 \mathrm{FF}+100.0 \%$ SOUDC CER | 29480 | 0160.3847 |
| A SC36 | 0180-2323 | , |  | CAPACITOR -FXD 470UF\% PS0 $10 \% 6.3 V D C$ AL | 28460 | 0180-2823 |
| A CCJ\% | 0180-2923 | 1 |  | CAPACITOR FXD 470UF+50-10\% 6.3VDC AL | 29480 | 0190 2923 |
| Ascise | 0180-0692 | ${ }^{6}$ | 3 | CAPACITUR FXD E2dUF+50-10\% 3SUDC AL | 00494 | 35 VFL. 220 |
| A6C39 | 0180-0692 | 3 |  | CAFACITOR - FXD $22005+5010 \%$ 35UDC AL | 00494 | $35 \mathrm{JUSL2a} 0$ |
| A 6 E:40 | 0100-2923 | 1 |  | CAPACSTOR - F X $4704 \mathrm{FF}+50-10 \% 6.3 V D C$ AL | 23430 | 0180-2823 |
| A6C41 | 0160 - -3847 | 9 |  | CAFACITOR -FXD ATUF + $100 \cdots 5 \%$ 50UDC CER | 28480 | 6160-3847 |
| ASCST2 | 0180-2823 | 1 |  | CAPACITOR-FXD 470UF+50m $10 \%$ 6, 3VDC AL | 233480 | 0100-2823 |
| Abrs. 3 | 0180-9326 | 4 | 1 | CAPACITOR F- CDD 1000UF+50-10\% 16 GUDC AI. | 29480 | 0160-2026 |
| A6C54 | 0160-35588 | 9 |  | CAPACSTOR-FXD, 1UF + -20\% 50UBC CER | 28480 | 0160-35558 |
| A6CS5 | $0160 \cdots 3558$ | 9 |  | CAPACITOR-FXD, 1 UF $+\cdots 20 \%$ SOUDC CER | 28480 28480 | $01600-3558$ $0160-3847$ |
| Abctig | 0160 -3847 | 7 |  | CAPACITOR -FXD . $01.4 \mathrm{~F}+108.3 \%$ SOVDC CER | 28480 28480 | \$160-3847 |
| A 6 CS 7 | 0180-3847 | 9 |  | CAPACITOR -FXD, 0tUF +100\% 0 SOVISE CER | 28490 | $01600-3847$ |
| AtCEO | 0150-3622 | 8 | 3 |  | 20654 | 2130Y5V100R104Z |
| A 6659 | 0160-3622 | 8 |  | CAPACSTOR-FXD $14 \mathrm{HF}+30-20 \% 100 \cup D C$ CER | 26654 | $2130155100 R 104 Z$ $2130 Y 5 V 100 R 104 Z$ |
| ficter | 0160 3622 | ${ }^{8}$ |  | CAPACITOR FXD, 1UF $610-20 \% 100 \cup D C$ CCR | 26654 | 2130Y50100R1042 |
|  | $0160-2009$ $0160-2009$ | 3 3 3 | 2 |  | 28480 28480 | 016002019 $0160-2009$ |
|  |  |  |  |  |  |  |
| AbCes 3 | 0160-3558 | 9 |  | CAPACTTOR FXX , 1UF + $20 \%$ SOUDC CER | 28480 | 0160-3558 |
| A 6.6 .64 | 0160-3558 | 9 |  | CAFACITOR-FXD . $14 F+\cdots 20 \% 50 \cup D C$ CER | 28480 | 0160-3558 |
| AbCR1 | 1902--3153 |  | 1 | DTODE-ZNR 9,314 2\% DO-35 PD= $=14$ | 22488 | 1902-3153 |
| A 6 CRE | 1901-01480 | 1 |  | DIDDE -SWITCHING 30V 50MA 2NG DO-35 | 28480 | 1981-0040 |
| AGCR4 | 1901-0040 | 1 |  | DIODE--SWITCHING $30 \cup 51 / 2 M A$ 2NS DO-35 | 28480 | 1901.0040 |
| AGCRES | 1901-0040 | 1 |  | DTODE SWITCHING 30V 50MA 2NG DO-35 | 28460 | 1901"0040 |
| Agst | 1200-0473 | 8 |  | GOCKET-IC 16-CONT DIP DIP--SLDR | $2 \mathrm{Sa480}$ | 1200.0473 |
| A6, 23 | $1251 \cdot 6567$ | 0 |  | CONDECTOR 21.-PIN M POST TYPE | 23480 | 1251-6\%57 |
| A6.J3 | 1251-6567 | 0 |  | CONNECTOR 21-PIN M POST TYPE | 28488 | 125E1-6567 |
| A 6 Ja | 1251-6567 | 0 |  | CONNECTOR 31 PPIN M POST TYPE | 2 CABO | 1251-69567 |
| A6.T51 | 1200--0634 | 3 | 1 | SOCKET-IC: 24-CONT DTP DIP -.ELDR | 28480 | 120000634 |
| A 6 d 1 | 7100-2459 | 0 | 1 | INDUCTOR RF-CH-MED $121 \mathrm{LH} 1 \%$, 166DX, 3 ESLG | 28400 | 9100-2459 |
| Able | 9100-1637 | 4 | 1 | INDUETOR RF-CHEMLD 120UH 5\%, 166DX, 385 LG | 28480 | 9100-1637 |
| Aclu 3 | 9100-3334 | 2 |  | INDUCTOR 250H $10 \%$. 3 D | 23480 | 9100-3334 |
| AGMP1 | 1205-0298 |  | 3 | HEEAT SINK PLISTC-PWR--CS | 28480 | 1205.0290 |
| AGMi'? | 0340-0564 | 3 | ${ }_{5}$ | INSULATOR-XSTR TIRTH゙CNDCT | 21480 | 0340-0564 |
| A6MP3 | 1258-0141 | 8 |  | Connector-Shorting | 28480 | 1258.0141 |
| A6P5 | 1251-3750 |  |  | CONNECTOR 10-PIN M POST TYPE | 234130 | $1251-3750$ |
| A6P26 | 1251-4922 | 6 |  | CONNECTOR 3-PIN M FOST TYPE | 28480 | $125 \div-4822$ |
| A6P52 | $12551-4245$ | 7 | 1 | CONNECTOR ב-PYN M POST TYPE | 29480 | 1251-4245 |
| A612 1 | 1854-0071 | 7 |  | TRANSISTIOR NPN SI PD $=300 \mathrm{MW}$ FT= 200 MHZ | 28480 | 1954-0071 |
| A602 | 1854-0215 | 1 |  | TRANGISTOR NPN $319 \mathrm{P}=350 \mathrm{MW} \mathrm{FT}=300 \mathrm{MHZ}$. | 04713 | 2N3904 |
| Abs : 1 | 06993-8344 | 0 | 1 |  | $2 \mathrm{g489}$ | ${ }_{\text {cher }}^{0698.8344}$ |
| A $\mathrm{R}^{2}$ 2 | 0683-7525 | 6 | 1 | RESISTOR 7,5K $5 \%$, 25W FC $1 \mathrm{Cm}=400 /+700$ | 02121 | CE17525 |
| A6R3 | 0683-6815 | 5 | 4 | RESISTOR 690 5\% .25W FC TC= $-400 /+600$ | 01121 01121 | CB6815 CE1035 |
| AGR 4 AGRS | 0683 $0683-1035$ 0.635 | 1 |  | RESISTOR RESISTOR 10K R | 01121 | CE1035 |
| A GRE | 0683-1035 | 1 |  | RESISTOR $10 \mathrm{~K} 5 \%$, 25W FC TC=-400\% +70 |  |  |
| AGRG $A 6 R 7$ | $1010 \cdots 0055$ 06.983 0.3279 |  |  | NETWORK - RES $9-31 P 10.0 \mathrm{~K}$ OHP4 X 8 RESISTOR 4.99 K R | $\begin{aligned} & 23480 \\ & 24546 \end{aligned}$ | $\begin{aligned} & 1810 \cdots 0055 \\ & 64.1 / 0-10 \cdots 4591-F \end{aligned}$ |
| A 6 R 7 $A 6 R B$ | $10,983-3279$ $0678-4020$ | 1 1 1 |  | RESISTOR $4,99 \mathrm{~K}$ RESISTOR $7,53 \mathrm{~K}$ 1\% | 245.46 24546 | $C 4-1 / 8-T 0-9531 \cdots$ |
| AGRE AGR9 | $0678-4020$ $1810-10074$ | i | 1 | NETWORK -RES $9+3 \mathrm{SP} 1$, BK OHM $\times 8$ | 28490 | $1810 \cdots 076$ |
| A61810 | 6693-1825 | 7 | 2 | RESIGTGR 1.8K $5 \%$, 25W FC TC $=-400 /+700$ | 01121 | CE1825 |
| $\begin{aligned} & A G R 13 \\ & A G R 14 \end{aligned}$ | $\begin{aligned} & 1810 \cdots-0140 \\ & 0693-1035 \end{aligned}$ | 9 | 1 | NETUORK-RES 4- SIP22.DK OHM $\times 3$ RESXSTOR $10 \mathrm{~K} 5 \%$, 255 FE $1 \mathrm{C}=-400 /+700$ | $\begin{aligned} & 91637 \\ & 01121 \end{aligned}$ |  |
| AGR15 | 06883-3625 | 9 | 3 | RESTSTOR $3.6 K 5 \%$, 2SW FC $T C=4600+780$ | 01121 | C83625 |
| AGR 16 | -6683-3625 | 9 |  | RESISTOR 3.6K $5 \%$. 25 W FC $T C=-400 \%+700$ | 01121 | CB3625 |
| A6R17 | 1910-0229 | 5 | 1 | NETWORK-RES 8-GIP 330 , O OHM $\times 7$ | 01121 | 209A3331 |

See introduction to this section for ordering information
*Indicates factory selected value

Table 6-3. Replaceable Parts


[^8]Table 6-3. Replaceable Parts


[^9]Table 6-3. Replaceable Parts

| Reference Designation | HP Part Number | C | Qty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AER1 | 1854-0475 | 5 | 1 |  | 28480 04713 | $1854-0.473$ |
| ${ }^{\text {A8Q }}$ | $1854-0215$ $1853-0036$ | 2 |  |  | 94713 23430 | $\begin{aligned} & 2 N 3904 \\ & 1853=0036 \end{aligned}$ |
| A8Q3 Agis | $1653-0036$ $1853-0042$ | 2 | $\stackrel{2}{2}$ | TRANGISTOR PNP SI PD $=310 \mathrm{OLW} \mathrm{FT}=\mathrm{ESOMMZ}$ | 28480 28490 | -1853-0042 |
| ABQS | 1954-0215 | 1 |  | TRANSISTOR NPN GI PD=350MW FTE30AMHZ | 04713 | 2N3904 |
| A8G6 | 1854-0215 | 1 |  | TRANSISTOR NPN SI PD $=350 \mathrm{MM}$ FTE 380 Hitz | 04713 | 2 N 3904 |
| ABQ7 | $1053-0020$ | 4 | 4 | TRANSTGTOR PNP SI PD=300MW FT $=150 \mathrm{MHZ}$ | 28480 | 1853.0020 |
| Ag, | 1853-0020 | 4 |  | TRANSISTOR PNP SI PD=300\% FT ( $=150 \mathrm{MHZ}$ | ${ }^{283488}$ | 1853-0020 |
| ABQ11 $A 8 Q 12$ | $185,4-0215$ $1953-0042$ | 1 |  |  | 04713 28480 | 2N3904 $1053-0042$ |
| A8R12 | 1953-0042 |  |  |  |  |  |
| AbQ13 | 1854-0215 | 1 |  | TRANSIBTRR NPN SI PD $=350$ MW FT T:300MHIZ | 04713 | $2 \times 3704$ |
| AES14 | 1854-0692 | 8 |  | TRANSISTOR NPN EI PD=15W FT=5QMitz | 04713 | MJE223 |
| ABQ15 | 1653 0367 | 2 | 1 |  | 04713 | MJE233 |
| ABR 1 $A B R 2$ | $0696-3279$ $0757-6458$ | 0 7 | 1 |  | 24546 24546 | $\begin{aligned} & \text { C4-1/8 }-T 0-4991-F \\ & C 4-1 / g-70-5112-F \end{aligned}$ |
| ${ }_{\text {ABRR }} \begin{aligned} & \text { Abra }\end{aligned}$ | $0757 \cdots 6458$ $0757-0283$ | 8 | 1 | RESISTR | 2.4546 | C4.1/8-T0-2001-F |
| ABR 4 | 17557-13293 | 6 |  | RESISTOR $2 \mathrm{~K} 1 \% .125 \mathrm{~N}$ F TC $=0+-100$ | 24546 | C4-1/B-T0-2301-F |
| Agrs | 06683-4705 | 8 |  | RESTSTOR 47 5\% .25W FC TC=-401+500 | 01121 | CFA4705 |
| Aarg | 0683-4705 | 9 |  | RESISTGR $475 \%$, 25w FC TC $=-400 /+500$ | 01121 | C84705 |
| ABR7 | 06998-3279 | 0 |  | RESISTOR $4.99 \mathrm{~K} 1 \%$. 1255 F F TC=0 $+\cdots 100$ | 24546 |  |
| AERS | 0678--3223 | 4 | 1 | RESISTOR $1.24 \mathrm{~K} 1 \mathrm{~K}, 125 \mathrm{~W} F \mathrm{FC}=0+100$ | 24546 | C4 $41 / 8+\mathrm{T} 0-1241-\mathrm{F}$ |
| AbR11 | 06699-3449 | 8 | 1 |  | 24546 28480 | $\begin{aligned} & C 4-1 / 8-T 0-309 R-F \\ & 0690-6360 \end{aligned}$ |
| ABR12 | 8698-6360 | 6 |  |  | 28480 |  |
| Abr13 | 0699-6360 | 6 |  |  | 28.490 24546 |  |
| ABR14 | 06,98-4453 | 4 | 3 |  | 24546 24546 |  |
| ABR 15 ABR 16 | 0698.4453 $0683-1015$ | 4 7 7 |  |  | $0 \times 121$ | Cb1015 |
| AgR17 | 06833-1015 | 7 |  | RESISTOR $1005 \%$, 25 \% FC TC=-400/+500 | 01121 | Cal015 |
|  | 06033-104 ${ }^{\text {c }}$ | 3 |  |  | 01121 | CE1045 |
| AER23 | 0757-0273 | 4 |  | RESTSTOR 3.01K $1 \%$. 1235 FF TC=0+-100 | 24546 | C4-1/8-T0-3011-F |
| AbR2\% | 06961-4478 | 7 | 1 |  | 24546 24546 | CA 1/8-T0-3011-F |
| AgR23 AbREA | 6757-0.273 $0633-4705$ | ${ }_{4}^{4}$ |  | RESISTOR $3,01 \mathrm{~K}$ RESISTOR $47 \%$ $5 \%$ | 01121 | C 64705 |
| A8R25 | 0683-4705 | 8 |  | RESISTOR $475 \%$, 254 FC TC $=-\ldots 400 / 5500$ | 01121 | CFA705 |
| ABR2. 6 | 0683-3305 | 2 | 2 | RESLSTOR $335 \%$, 25W FC TC= $400 /+500$ | 01121 | $\mathrm{CBS}^{3} 05$ |
| A8R27 | 0683-3305 | 2 |  | RESISTOR $335 \%$, 25W FC TC $=-400 /+500$ | 01121 | ceazes |
| ABR29 | 0693-0365 | - | 2 | RESIETOR $3.65 \%$, 25, FCC TC: $=-400 /+300$ | 31121 | C636C5 |
| A8R31 | 0757-0283 | 6 |  | RESISTOR 2K $1 \%$, 125w F TC=0\%-100 | 2.4546 | C.4-1/8-T0-2001-F |
| AER3E | 0757-0472 | 5 | 2 | RESTGTOR $200 \mathrm{~K} 1 \%$. 225 SW F TC: $0+\cdots 100$ | 24546 24546 |  |
| A8R33 | $0757-0472$ 0757.0293 | 5 |  |  | 245.46 24546 | C4 1/8-T0-2003-F C4-1/8-T0-2001-F |
| Abr36, | 0683-85565 | 0 | 2 | RESISTOR $5.65 \%$, 25W FCC TEm-400/4-500 | 01121 | creses |
| A 8 R 37 | 0683-0565 | 0 |  |  | ${ }_{0}^{01121}$ |  |
| ABC 36 | 0683 - 2235 | 9 |  | RESISTOR $225 \%$, 254 FC TC= $400 / 4500$ | 01121 | Cbezes |
| ABu1 | 1906-0096 | 7 |  | DIODE-FW ERDG 2000 2A | 04713 | MDAOU2 |
| ABUL | 1826-0464 | 3 | 1 | IC $V$ RGLTR T0-220 | 84713 | MC78M15CP |
| Agu3 | 1926-0214 | 1 | 1 | IC $\cup$ RGL.tr to-220 | 04713 | MC791ECT |
|  | 1251-0600 | 0 |  | CONNECTOR-SCL CONT PIN 1.14-Min-ESC-GZ SQ | $2 \mathrm{B4B0}$ | 1251-0600 |
|  | 2190-0004 | 9 | 1 |  | 29490 | $2190-0004$ $2200-0147$ |
|  | 2260-0002 | 6 | 1 | NUT-HEX-DEL-CHAM 4-40-THD .062-IN-THK | 238480 | 2260-0002 |
|  | 2360.0113 | 2 |  | SCREW-MACH 6-32 . 2 S -3N-LG PAN-HID-POZT. | 00000 | ORDER BY DESCRIftion |
|  | 3050-0716 | 5 | 23 | WASHER FL MTLC NO, ${ }^{\text {S }}$, 128-IN-ID | 22480 | 3050 -1716 |
|  | 7121-1234 | 9 |  | LABEL-CAUTION 1.925-IN-WD 2.24 IN -LG | 28480 | 7121-1234 |
| A9 | 03325-66509 | 6 | 1 | CRYSTAL OUEN AGEGMELY (OPTION 001) | 29430 | 03325-66509 |
| AFC1 | 1180 06\% | 8 |  |  | 00.494 | 35vestaza |
| APCe | 0160-3847 | 9 |  | CAPACTTOR FXD - $01 \mathrm{BF}+100-0 \%$ SOUDC CER | 237480 | 0160-3847 |
| AgC3 | 1160-3847 | 9 |  | CAPACTTOR FXD . 014 F +100-0\% SOUDC CER | 28480 00494 | $01601-3847$ $25 v 0 s L 1000$ |
| ADC4 | 0190-0693 | 9 | 1 |  | 00494 | 25vostivo |
| AFCR1 | 1981-0049 | 0 | 2 |  | 28489 29480 | $1901-0049$ $1981-0049$ |
| AgCR3 | $1901-0049$ 19020049 |  | 1 |  | 28480 | 1902-0049 |
| A PE 1 | 0960-0465 | 7 | 1 | OSCTLLATOR 10 MHE | 29490 | 0960-11485 |
| А9J19 | 1251-2967 | 8 |  | Connectibrphoino sincle phono sack; dip | 28480 | 1251-2969 |
| $\begin{aligned} & A 9 M P 1 \\ & A T M P ? \end{aligned}$ | $\begin{aligned} & 1205-4298 \\ & 0340-3564 \end{aligned}$ | 5 3 |  | $\begin{aligned} & \text { HEAT SINK PLSTC-PMR-CS } \\ & \text { INSULATOR-XSTR THRM CNDCT } \end{aligned}$ | $\begin{aligned} & 28980 \\ & 23480 \end{aligned}$ | $\begin{aligned} & 1205-0298 \\ & 0340-0564 \end{aligned}$ |
| APP 1 | 1251-4246 | 8 |  | CONNECTOR 3-PTN M POST TYPE | 22480 | 1251-4246 |

See introduction to this section for ordering information
*Indicates factory selected value

Table 6-3. Replaceable Parts


See introduction to this section for ordering information
*Indicates factory selected value

Table 6-3. Replaceable Parts

| Reference Designation | HP Part <br> Number | $\begin{aligned} & C \\ & D \end{aligned}$ | Oty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A14C116 | 0160-3847 | 7 |  | CAPACITOR-FXD, OUUF $+103.3 \% 50 N D C$ CER | 28780 | 8168-31347 |
| A14C117 | 0160-3847 | 9 |  | CAPACITOR-FXD , O1UF +100-0\% SOUDC CER | 28480 | 016063847 |
| A14C110 | 0180-1746 | 5 |  | CAPACITOR-EXD ELAF-10\% 20UDC TA | 5 | $1500156 \times 902012$ $1500156 \times 902082$ |
| A14C119 | 01180-1746 | 5 |  | CAPACSTOR -FXD <br> CAPACLTOR $-F \times D$ | 56238 | $\begin{aligned} & 150.0156 \times 94 \\ & 0160-3847 \end{aligned}$ |
| A140121 | 0160) 38847 | 7 |  | CAPACLTOR - FXD . $014 \mathrm{~F}+104.0 \%$ Soulc Cer | 28480 |  |
| A14C122 | 8160-3847 | 9 |  | CAPACSTOR-FXD, $014 F^{*}+100-8 \%$ SOUDC CER | 28990 | $\begin{aligned} & 0160-3947 \\ & 0160-0299 \end{aligned}$ |
| A140.124 | 0160-0299 | 9 | 1 |  | 26480 28490 | 0160.-3847 |
| A14C126 | 01600-3847 | 9 |  |  | 23480 | 0150-3847 |
| Al $4 C 12 \%$ A AC 28 | $0160-3847$ $0168 \cdots 3847$ | 9 |  |  | 28480 | 0160 3847 |
| A14C129 | 0160-3347 | 7 |  | CAPACITOR - FXb , OdUF +100.0\% 53VDC CER | 20460 | 01603-3847 |
| A1 AC130 | $0160 \cdots 2240$ | 4 | 3 | CAPACTTOR - F X APF +-, 2SPF 500UDC CER | 28490 | 0160-2240 |
| A14C131 | 0160-3847 | 9 |  |  | 23480 | 0160-3847 |
| A14C132 | 0160-3847 | 9 |  | CAPACITOR-FXD , 1UF +100-B\% 50UDC CER | 284880 | 9160-3847 |
| A14C133 | 0160-2253 | 6 |  |  |  |  |
| A14C134 | 0160 - 3847 | 9 |  | CAPACITOR-FXD O1UF + 10000 O S0UDC CER | 25490 20480 | 016003847 $0160 .-2240$ |
| AI 4 Cl 135 | 0160-2240 | 4 |  | CAF'ACXTUR-FXD CAP | 29480 29490 | 2169-6240 |
| Al 4 Cl 36 | 0160-3508 | ${ }_{3}$ |  |  | 28480 | 0160-457 |
| A1AC137 A1 AC13B | $0160-4571$ $0160-4571$ | 8 8 8 |  | CAPACITOR-FXD , 11JF + EQ-20\% 50VDC CER | 26480 | 0169.4571 |
| A14C139 | 0160-31347 | 9 |  | CAPACETOR-FXD , D1UF + $108.0 \%$ 5JUDC CER | $2 \mathrm{C4} 400$ | 0150-3847 |
| Al 4 C141 | 0160-4571 | B |  | CAPACTTOR - FXD , 1UF $+80-20 \%$ SOUDC CER | 29480 | 0160-4572 |
| A14C142 | $0160 \cdots 0156$ | 7 | 1 | CAPACITOR FXD 390DPF + - 10\% 203VDC POLYE | 2bab0 | 0169-0156 |
| A1 4C143 | 0160-0301 | 4 | 1 | CAPACITOR-FXD .012UF +-10\% 200UDC POLYE | 28480 23480 | $\begin{aligned} & 0160-0301 \\ & 0160-2.414 \end{aligned}$ |
| A14C144 | 016,0-2414 | 4 | 1 | CAPACITOR-FXD . 322UF + 5\% 20DUDC: POLYE | 23480 |  |
| A14C203 | 0160-3947 | 9 |  | CAPACITOR-FXD $\quad$ O1UF + $100-0 \%$ SQUDC EER | 26498 30480 | $\begin{aligned} & 0160-3047 \\ & 0160-3466 \end{aligned}$ |
| A14C205 | 0160-3466 | B |  |  | 283480 28480 | $0160-3466$ $0160-3847$ |
| A14C20日 | 0160-3847 | 9 |  | CAPACITOR-FXD CAPACI TOR F | 23480 | 0160-3847 |
| A14c209 | 0.160-31347 | 9 |  | CAPACITOR CAPACTTOR | 2¢я¢0 | 0169-3847 |
| A14C211 | 0160-3647 | 9 |  |  |  |  |
| A14C212 | 1160-3847 | 7 |  | CAPACITOR FXD - DABF $+100-10 \%$ SOUDC CER | 28480 28480 | $\begin{aligned} & 0160-31347 \\ & 0160 \cdots 4532 \end{aligned}$ |
| A140213 | 0160-4532 | 1 |  |  | 288900 28480 | $01660-4538$ $0160-4538$ |
| A1 4C214 A1 AC217 | $0160-4532$ $0121-0452$ | 1 | 1 |  | 28480 74970 | 187-0103*028 |
| A $14 \mathrm{CL17}$ A 4 C 21 B | $0121-0452$ $0160-4571$ | 4 <br> 8 | 1 | CAPACJTOR FXD . $14 F+80+20 \%$ SSUDC CER | 28430 | 0160-4571 |
| A14CO29 | 0180-1746 | 5 |  | CAPACITOR-FXD 15UF+-10\% 20VDC TA | 56299 | 150015699020E8 |
| A14C220 | 0160-4571 | 8 |  | CAPACITER-FXD, 1UF + $30-20 \%$ SOUDC CER | 28488 | 01601-4571 |
| A140221 | 0160-3647 | 9 |  | CAPACITOR-FXD $0101 \mathrm{JF}+100-0 \%$ SDVDC CER | 28480 28483 | 01603847 $0160-250$ |
| A14Cese | 0160-2250 | ${ }_{6}^{6}$ |  |  | 28480 | 0160-384\% |
| A14C223 | 0160-3847 | 9 |  |  |  |  |
| A14C224 | 0160-3847 | 9 |  |  | 28480 | 0160-3847 |
| A14C225 | 0160-3947 | 9 |  | CAPACITOR-FXD ${ }^{\text {CAL }}$ | 28489 | $0160-2240$ |
| A1 $4 \mathrm{Cz236}$ A $4 \mathrm{CL27}$ | $9160-2240$ $0160-3947$ | 4 9 |  |  | 28480 28480 | 0160-3847 |
|  | 016,0-3847 | 9 |  | CAPACITOR-FXD . $014 \mathrm{~F}+100 \cdot 0 \% 50 \cup D C E E R$ | $2 \mathrm{Cab0}$ | 0160-3047 |
| A14C229 | 1160-3847 | 9 |  | CAPACITOR-FXD .01UF +100-0X 58VIC CER | 28480 | 0164.38477 |
| Al $4 \mathrm{Caz3}$ | 0160-3647 | 9 |  |  | 28480 | $1500-384 \times 9$ |
| A14C231 | 9190-1746 | 5 |  | CAPACTTDR-FXD 15 UF $+10 \%$ 20VDC TA | 28480 | 0160.44571 |
| A14C232 | $0160-4571$ $0180-6210$ | B 6 |  |  | 556239 | 150D335 00013 A 2 |
|  | 0160-3847 | 7 |  | CAPACTTOR-FXD . $014 \mathrm{~F}+100 \cdots$ \% SOUDC CER | 23490 | 0160-3847 |
| A1 4C235 | 0160-3847 | 9 |  | CAPACITOR -FXD : O1UF $+10000 \%$ 5nUDC CER | 28480 | 0160-3847 |
| A14C236 | 116513466 | 8 |  | CAPACITOR-FXD 100PF +-10\% 1 KUDC EER | 23480 | B163-3466 |
| A 4 4.238 | $0.6,0 \cdots 2055$ | 9 |  |  | $2 \mathrm{a480}$ | 0160-2053 |
| A14C239 | 0160-4571 | 8 |  | CAPACITOR-FXD . $1135+30-20 \%$ SJUDE CER | 28480 |  |
| A140246 | $0160 \cdots 3466$ $0160 \cdots 3847$ | 8 8 9 |  | CAPACITOR-FXD CAPACITOR-FXD | 23480 23493 | $0160 \cdot 3466$ $0150-3847$ |
|  | $0160-3847$ $0160-3847$ | ${ }_{9}^{9}$ |  | CAFACITOR-FXD CAPACTTOR - | 28480 | $0160 \cdots 3847$ |
| A 14 Cz 43 | 0180-1746 | 5 |  | CAPACITOR FFDD 15UF+-10\% 20UDC TA | - 56297 | $1500156 \times 9020 \mathrm{Ba}$ |
| A1 4C2.46 | 0180-1746 | 5 |  | CAPACITOR-FXD $15 \mathrm{SJF}+10 \%$ 20VDC TA | 56299 | $1505156 \times 902082$ |
| A14C260 | 0168-4571 | 8 |  | CAPACITOR-FXD . $13 \mathrm{FF}+80-20 \%$ SQUDC CER | 28460 2.480 | $0160 \cdots 4571$ $0160 \cdots 4571$ |
| A1 AC261 | $0168-4571$ $0160-4571$ | 8 |  |  | 26480 28480 | $0160 \cdots-4571$ $0160-4571$ |
| A $14 \mathrm{Cz62}$ | 0160-4571 | 8 5 5 |  |  | 56289 | 1500156×902012 |
| A $14.4 \mathrm{Cz63}$ | 0190-1746 | 5 |  |  | 28430 | 0160-4571 |
| A14C264 | $0160 \cdots 4571$ | B |  |  |  |  |
| A1 4CR1 | $1902 \cdots 0041$ | 4 | 1 | DIODE - 2 NR 5, 11U 5\% DO-35 PD=, 4W | 20480 28460 |  |
| A1ACRZ | 1901-0040 | 1 |  | DIODE - ELJTCHITNG 30U 50 MA 2NS CO -35 | 28480 | $\begin{aligned} & 1901-0040 \\ & 1901-0040 \end{aligned}$ |
| A1 4CR3 | 1901-0040 | 1 3 |  | DICDE-SWITCHING 30U SOMA | 20480 | 1901-0050 |
| A1 4CR A 14 CRS | $1901-0050$ $1902-3345$ | 3 7 | 1 | DIODE-ZNR $51.10 \quad 5 \%$ DO-35 PD $=12.4 \mathrm{~W}$ | 28480 | 1902-3345 |
| A1ACRG | 1901-0050 | 3 |  | DIODE-SWITCHING BOV 20BMA 2 NS DO-35 | 29480 | 1911-0050 |
| A1 4CR7 | 1901-0058 | 3 |  | DIODE-SWITCHING GOU 200MA 2NS DO-35 | 284808 | 1701-0050 |
| A14CR76 | 1901-0049 | 1 |  | DIODE--SWITCHING 30450 MA 2NS 30 O 35 | 28480 | 1901-0040 |
| A14CR101 | 1901-0040 | 1 |  | DIODE SWITCHING 30U 50MA 2 AS DO-35 | 28480 | 1901-0040 |
| A14CR102 | 1901-0040 | 1 |  | DIODE-3WITCHING 3OU EGMA 2NS DO-35 | 28490 | 1701-6040 |

See introduction to this section for ordering information
*Indicates factory selected value

Table 6-3. Replaceable Parts

| Reference Designation | HP Part Number | $\begin{aligned} & C \\ & D \end{aligned}$ | Oty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A1.4CR103 | 1901-0040 | 1 |  | DICDE SUITCHING 3DV Sama ens Do-35 | 23480 | 1901~0040 |
| AI ACR 104 | 1901-0040 | 1 |  | DIODE--SWITCHING 304 SOMA 2NS DO-35 | 294日 | 1901-3040 |
| A $14 C R 106$ | 1901-0040 | 1 |  | DIODE SWITCHINE $30 \cup 50 \mathrm{MA}$ 2NG DO-35 | 2 CaCD | 1901-0040 |
| A 1 ACR 107 | 1901-0046 | 1 |  | DIODE SWITCHING 30U 50MA こNS DO-35 |  | $1901 \cdots 040$ |
| A 14 CR 10 E | 1901-0535 | 9 |  | DIODE- GM SIG SCHOTTKY | 29480 | 1901-0535 |
| A1ACR109 | 1901-0535 | 9 |  | D HODE-SM STG SCHOTTKY | 28480 | 1901-35335 |
| A1.4CR1 10 | 1901-0040 | 1 |  | DIODE-SUITCHXNG JOV SOMA 2NS DO-35 | 28480 | 1701-0040 |
| A1 ACR1:1 | 1901-0040 | 1 |  | DIODE-SWITCHING 30450 MA 2NS DO-35 | 26480 | 1901-0040 |
| A1ACREOS | 1902-0631 | 0 | 2 |  | 04713 | 1 N*535 |
| A ACR20g | 1911-0040 | 1 |  | DIODE-SWITCHING 3OU SOMA 2NS DO-3S | 26480 | 1901-0040 |
| A A ACR209 | 1901-1040 | 1 |  | DIDDESWTTCHING $30 \cup 50 \mathrm{MA}$ 2NS DO-3E | 28480 | 1901-0040 |
| A 14 CR 210 | 1901-0040 | 1 |  | DTODE-SWITCHING 30U STMA 2NG DO-35 | 29490 | 1901-0040 |
| A14CR211 | 1991-0950 | 3 |  | DIODE SWITCHING BOU 200MA 2NS DO-35 | 28480 | 1901-0050 |
| A) ACR212 | 1901-0030 | 3 |  | DIODE SWITCHING 900 200NA 2 NS DO-35 | 29480 | 1901-0050 |
| A A CR: ${ }^{\text {a }}$ | 1902-3147 | 9 |  |  | 23480 | 1902-3149 |
| A14CR214 | 1962-3030 | 7 |  |  | 28.488 | 1902-3030 |
| A14CRE15 | 1902-0631 | 8 |  |  | 0.4713 | 1N5351E |
| A ACRe17 | 1901-0048 | 1 |  | DRODE-SWITCHING 304 50MA 2 NS DO-35 | 29480 | 1901-0040 |
| Al 4 CR217 | 1901-0040 | 1 |  | DIODE-SWITCHING $30 \cup 50 \mathrm{MA}$ 2NS DO-35 | 28480 29480 | $1901-0040$ $1901-0040$ |
| A A ACRECO | 1901-0040 | 1 |  | DKODE SWITCHINE 3OV 50mA 2NS DO-35 | 29480 | 1901-0040 |
| Alatirer | 1901-0040 | $i$ |  | DIDDE SWITCHING 300 SOMA 2NS DO-35 | 28460 | 1901-0040 |
| A ACR2az | 1901-0535 | 9 |  | DIODE-SM SIG SEMOTTKY | 28460 | 1901-05335 |
| Alacreza | 1901~0535 | 9 |  | DIODE-SM SIG ECHDTTKY | 28480 | 1901 -105335 |
| A1 ACR224 | 1901-6535 | 9 |  | DIODE SM SIC ECHOTTKY | 28490 | 1901-0535 |
| A14CR225 | 1901-0535 | 7 |  | DIDDE SM SIG SCADTTKY | 28488 | 1901-0535 |
| At AFi | 20110 0343 | 1 |  | FUSE 25A $135 \cup$ NTD . $281 \times .093$ | 29480 | 2110.0343 |
| $\mathrm{Al}_{4 \mathrm{FE}}$ | 2110-0343 | 1 |  |  | 28480 29490 | $2110-0343$ 2110.0343 |
| A1 473 A 14 F | $2110-0343$ $2110-0301$ | 1 | 1 |  | 29490 28480 | 2110.0343 2110.0301 |
| A1451 | 9159-0005 | 0 | 1 | RESISTOR -ZERO OHMS 2Z AUG LEEAD DTA | 23490 | 9159 0005 |
| A14.J2 | 1251-2969 | 13 |  | CONNECTOR -PHONO SINGLE PHONO JACK; DIP | 28480 | 1251-2969 |
| A14J4 | 1251-2969 | 8 |  | CONNECTOR-PHONG SINGIE PHONO JACK; DIP | 28490 | 1251-2969 |
| A14.TS | 1251-2969 | B |  | CONNECTOR-PHONO SINGLE PHONO JACK; DIP | 29480 | 1251-2969 |
| A14J6 | 1351-6557 | 0 |  | CONNECTOR $21-P$ PIN M POST TYPE | 28480 | $1251-6567$ |
| A14.3? | 1251-2969 | $\square$ |  | CONNECTOR - PHONO STNGLE PHONO JACK; DIP | 23484 | 2051-2969 |
| Al 4 J 12 | 1251-2969 | 9 |  | CONNECTOR PPHONO SINGLE PHONO JACK; DIP | 28480 | 1251-2969 |
| A14J13 | 1251-2969 | $\square$ |  | CONNECTGR-PHONO GINGLE PHOND JACK; DIP | 28480 | $1251-2969$ |
| A14J14 | 1251-2969 | 8 |  | CONNECTOR PHONO SINGEE PHONO JACK; DIP | 23480 | $1251-2969$ |
| A14.523 | 1251-2969 | ${ }^{8}$ |  | CONNECTOR-PHONO SINCAE PHONO TACK; DIP | 28480 | 1251-2969 |
| A14.524 | 1251-2969 | 8 |  | CONNECTOR PHONO GINGLE PHIONO JACK ; DIF | 29480 | 1251-2969 |
| Al4J25 | 1251-2969 | a |  | CONNECTOR PHONO ETNGLE PHONO JACK; DIP | 23480 | 1251-2969 |
| A14530 | 1251-3064 | 0 | 2 | CONNIECTOR 14-PIN M POST TYPE | 29480 | 1251-5064 |
| A14.131 | 1258-0141 | 9 |  | JUMPER-REM | 29480 | 1259-0141 |
| A141-26 | 9130-1791 | 1 |  | INDUETOR $290 \mathrm{NH} 20 \%$, 23DX, 375 LG | 28490 | 910001791 |
| A1.41.27 | 9100-1791 | 1 |  |  | 28480 | 9100-1791 |
| A14L76 | $9100 \cdots 1791$ | 1 |  | INDUCTOR $290 \mathrm{NH} 20 \%$, 23DX, 375EG | 29480 | 9110-1791 |
| 814.77 | 9100-1791 | 1 |  |  | 23483 | 9100-1791 |
| A14L7g | 9100-1791 | 1 |  | INDUCTOR 290NA $20 \%$, 230 DX .375 EL | 20480 | 9100-1791 |
| A14.79 | 7100-1791 | 1 |  | INDUCTOR $290 \mathrm{NH} 429 \% .230 \times .3751 .6$ | 233400 | 9100.1791 |
| A14L80 | 9100-0539 | 3 |  |  | 28480 | $9100-10535$ 9.40 .0456 |
| A141.131 | 7140 10456 | 7 | 2 | INDUCTOR RFF-CH-MLD 470NH E\% . 1660 X . 3EELG | 28480 78480 | 9140.0456 |
| A1 4L102 A 141.103 | $7140-0456$ $7100-2486$ | 7 | 1 |  | 234800 28480 | 91416.0456 $9100-2436$ |
| A141. 104 | 9100-1622 | 7 | 3 |  | 28480 | $9100 \cdots 1622$ |
| A14L105 | 9130-1628 | 3 | 1 | TNDUCTOR RF-CH-MLD A3UH $5 \%, 1660 \times 1.385 \% G$ | 28480 | 9100-1628 |
| Al 4L-201 | 91100-1791 | 1 |  | TNDUGTOR 290NH 2G\%, 23DX,375LG | 28450 | 9100-1791 |
| A141303 | 2170-0894 | 0 |  | CORE SHIELJING EEAD | C8AB0 | $9170-0894$ |
| Al 4 LL 204 | 9170-08894 | 0 |  | CORE-SHIELDING BCAD | 28490 | $9170 \cdot 0094$ |
| A1401 | 1855-0092 | 4 | 1 | TRANGISTOR J FET N CHAN D MODE T0-13 SI | 28460 | 1855-0092 |
| AI 4 A 2 | 19155-0406 | 4 | 2 | TRANSTSTOR J-FET P-CHAN DMMODE ST | 32293 | TT110 |
| A1423 | 10540692 | 8 |  |  | 04713 | MJE223 |
| A14174 | $1855-0406$ $1855-0410$ | 4 |  | TRANGISTOR J-FEEY P-GHAN D-MODE SI | 32983 20400 | 17110 $1855 \cdots 410$ |
| A14025 | 1855-0410 | 0 | 1 | TRANGISTOR J-FET N-CHAN D-MODE TOM13 SI | $2 \mathrm{C400}$ | 1855-0410 |
| A14826 | 1853-0020 | 4 |  | TRANSISTOR PNP GI PD*360NG FTE 5 S0M | 238480 | 1053\%-0820 |
| Alader | 1953 -0336 | 8 |  | TRANSISTOR PNP 3I TV-92 RD=625MW | 28480 | 1853.0066 |
| A1492b | 1954.0215 | 1 |  |  | 04713 | 2N3904 CAS |
| A14[30 | 1058.0063 | 5 |  | TRANEISTGR ARRAY IA-PIN PLSTE DIP | $3 L 565$ 13608 | CAS102E |
| A 14950 | 1958-0047 | 5 |  | TPANSTSTOR ARRAY 16 -fin Pletc dip | 13608 | (1. $\mathrm{N}-20 \mathrm{OBA}$ |
| A14976 | 1054.0037 | 5 | , | TRANGLSTGR NPN S1 PD=363\%) FTETSMHZ | 28480 | 1855400087 |
| Al 49101 | 1954-0795 | 2 | 2 | TRANSTETRR NPN 5T TO-92 PD=625M | 64713 | MFSH10 |
| AIAQ10: | $1953 \cdot 0405$ | 7 | 1 | TRANSISTGR PNF SI PD=300MW FT BEOM | 04713 | 2N4239 |
| A) 40103 | 1853 - 00098 | 5 |  | TRANSISTOR FNF 2 N4917 SI PD 200 MW | 07263 88400 | 244917 $+854-0404$ |
| A14Q104 | 185.4-9404 | 0 | 1 | TRANSISTOR NPN SI TO-18 PJJ=360KW | 28460 | 1854-0404 |
| A141025 | $1054 \cdots 8.215$ |  |  |  |  |  |
| A140106 | 1835.4 - 05.560 | 9 | 3 | TRANGISTOR N'N SI DARL PD=31 MML | 64713 | MPs AlE |
| A) 46107 | $1854 \cdots 0215$ | 1 |  | TRANSTETOR NPN SI PD=3E0MW FT=300M | 04713 | ${ }^{2 N 3904}$ |
| 0149383 | 1853-0083 | 9 | 2 | TRANSISTGR PUAL PNP PDSGOTMW | 20.483 | 13553.00833 |
| At4810? | 1053-0083 | 9 |  | TRANGISTOR-DUAL. PNP PD=60014 | 23480 | 19530083 |

Table 6-3. Replaceable Parts

| Reference Designation | HP Part Number | $\left\|\begin{array}{l} \mathrm{C} \\ \mathrm{D} \end{array}\right\|$ | Qty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A140112 | 18354-1314 | 1 | 1 |  | 28490 | 1854-0314 |
| A140113 | 1e54-0560 | 9 |  | TRANGISTOR NPN SI DARL PD: 310 MH | 04713 | $\mathrm{MPS}^{\text {A A }}$ |
| A149114 | 1854-0215 | 1 |  | TRANSISTOR NPN SI FD=3SDMW FT $=300 \mathrm{MHZ}$ | 84713 | 2 r 3904 |
| A14Q116 A14Q117 | $1853-0066$ $1853-0066$ | 8 |  | TRANSISTOR PNP SIL TO-92 PD=625MW | 29480 28480 | $1853-0066$ $1053-0066$ |
| A14Q117 | 1853-0066 |  |  |  |  |  |
| A140118 | 1855-0001 | 1 |  | TRANGISTOR J-FET N-CHAN D-MODE SI | $\begin{aligned} & 28490 \\ & 04773 \end{aligned}$ | $\begin{aligned} & 1855-8081 \\ & \text { TiPS A12 } \end{aligned}$ |
| A14Q119 A140201 | $1854-05610$ $1954-0215$ | 9 |  |  |  | 2NST04 |
| A1 48201 A1 40203 | 1684-0215 | $\frac{1}{3}$ | 2 |  | ${ }^{04} 51585$ | $2 \mathrm{NBE6} 6$, |
| A14Q204 | 1054-0795 | 2 |  | TRANSISTOR NPN SI TO-92 PD=625MW | 04713 | MPS 5140 |
| A1402.06 | 1054-0215 | 1 |  |  | 04713 | 2N3904 |
| A148207 | 1954-0233 | 3 |  | TRANSISTOR NPN 2N38GE SI TO-39 PD-1H | 34595 | 2N3886 |
| A149200 | 1854-0215 | 1 |  | TRANSISTLiR NPN SI PD=350ML FTE:300MHZ | 04713 | 2H2704 |
| A148209 | 1853-0440 | 2 | 3 |  | 04713 | M144018 |
| A149210 | 1054-0357 | 2 | 1 | TRANGTSTOR-DUALL WPN PDE3G0KW | 28480 | 1854-0357 |
| A1412211 | 1855-0448 | 0 |  | TRANSISTOR PNP SI $70 \cdots 92$ PD $=6$ 6SM | 14713 | mpshei |
| A140212 | 1853-0036 | 2 |  | TRANSIETGR PNP ST PD=310MW FT= 250 MHZ | 28460 | 18533-11036 |
| A144213 | 1953-0440 | 2 |  | TRANGISTOR PNP ST T0-39 PD=54. FT=5001HZ. | 04713 | MM4819 |
| A149214 | 1853-0020 | 4 |  | TRANSISTTOR PNP SI PD $=300 \mathrm{HLD}$ FT $=153 \mathrm{MELZ}$ | 2 CAP 48 | 1853-0.020 |
| At 4q2:5 | 1054-0215 | 1 |  | TRANSTSTOR NPN SII PD=350M1 FT $=360 \mathrm{PH} \mathrm{Hz}$ | 04713 | 2N3904 |
| A140216 | 1854-18784 | 7 | 1 |  | 04713 | 2 N 3866 A |
| A142219 | 1053-0440 | 2 |  | TRANSISTOR PNP S. T0-39 PD $=5 \mathrm{5W}$ FT $=500 \mathrm{MHZ}$ | 0471.3 | MM4618 |
| A14R3 | 0698] 3155 | 1 |  | RESISTUR 4.64 K t\% , 125, FF TC=04-100 | 2.4546 | C4-1/0-70-4641-F |
| A14R4 | 0737-0439 | 4 | 5 | RESISTOR $6.81 \mathrm{~K} 1 \%$, 225 SW F TC= $=0+\cdots 100$ | 245486 |  |
| A14R5 | 0583-2225 | 3 |  | RESTSTOR $2.2 \mathrm{~K} 5 \%$, 2514 FC T $C=-400 /+700$ | 01121 |  |
| A14R6 | 2100-3253 | 7 4 |  |  | 28480 28480 | 21083-3253 |
| A14R7 | 0690-4817 | 4 | 1 | RESIGTGR 953K 1\% . 25W F rcent- 100 | $2 \mathrm{B480}$ | 2698-4817 |
| A14R8 | 069837850 | 1 | 1 |  | 19701 | MFACL/8-T9-945SR-B |
| A14R9 | 0757-0410 | 1 | 2 |  | 24576 24546 |  |
| A14R11 | 0\%57-1410 | 1 |  |  | 24546 01121 | ${ }_{\text {CW8225 }}$ |
| A1 4R26 A1 AR27 | - $0683-2225$ | 3 |  | RESISTOR $2.2 \mathrm{~K} 5 \%$.2SW FC TC= $=-400 /+700$ | 01121 | cheras |
| A14R20 | 0683-2225 | 3 |  |  | 31121 | ceazes |
| A14R29 | 0683-2225 | 3 |  | RESISTOR 2. 2 K K $5 \%$, 25 SW FC TC $=-400 /+700$ | 01121 | creaz |
| A14R31 | 0603-1035 | 1 |  | RESISTER 10K 5\% .25W FC TCx $400 /+700$ | 01121 | CE11035 |
| A14R32 | 0683-1035 | 1 |  | RESISTOR $10 \mathrm{KK} 5 \%$, 25 F FC TC: $-400 /+700$ | 01121 | CE1035 |
| A14R33 | 0603-1025 | 9 |  | RESISTOR $1 \mathrm{~K} 5 \%$. 25 W FCC TC= $=400 /+600$ | 01121 | C81 1225 |
| A14R34 | 0683-5635 | 5 | 1 | RESIETOR $56 \mathrm{~K} 5 \%$, 25W FC, TC $=-400 /+806$ | 01121 | CEE635 |
| A14R36 | 0693-2235 | 5 | 4 | RESTETUR 22K $5 \%$, 25W FE TC $=-403 / 4800$ | 01121 | C82235 |
| A14837 | 0663-2225 | 3 2 2 |  |  | 01121 19701 | cezezs <br> MF4C1/8-T0-1332-F |
| A14R3日 Al $4 R 39$ | - $\begin{aligned} & \text { 97575-0289 } \\ & 0757-0442\end{aligned}$ | $\stackrel{3}{9}$ | 3 |  | 12701 24546 | C4.1/8-70-1002-F |
| A14R40 | 2100-3214 | 0 | 1 | RESISTOR -TRMR $100 \mathrm{~K} 10 \% \mathrm{C}$ TOP--ADJ $1-\mathrm{TRN}$ | 28480 | 2100-3214 |
| Al 4 R41 | 0757-0239 | 2 |  | RESISTRR $13.3 \mathrm{~K} 1 \% \cdot 125 W \% T C=0+100$ | 19701 | MFF4C1/8-70-1332-F |
| A1 4 R 42 | 0699-0124 | 9 | 1 |  | 28480 | 0699-0124 |
| A1 4R43 | 0757-0442 | 9 |  |  | 245.46 24546 | $\begin{aligned} & C A-1 / 8-T 0-1002-F \\ & C 41 / 8 \cdots T 0-6251-F \end{aligned}$ |
| A14R44 | 0757-0441 | 8 |  | RESISTOR 8.25K 1\% . 125 W F TC= $=1+-100$ | 24546 | C4 $1 / 1 / 8 \cdots \mathrm{~T} 0-8251 \cdots$ |
| A14R45 | 0683-4705 | 9 |  | RESTSTOR 4\% 5\% , E54 FG TC= $400 \%+500$ | 01121 | C8A705 |
| A14R46 | 11683-1025 | 9 |  | RESISTOR $1 \mathrm{~K} 5 \%$, $254 \mathrm{FCC} T C=-400 / 1600$ | 81121 | 691025 |
| A1 4R47 | 06, 63 - 2265 | 1 | 1 | RESISTOR 22M $5 \%$, 254 FC TC | 01121 | crezes |
| A14RAE | 0683-4725 | 2 |  | RESISTOR 4.7K 5\%, 2SW FC TC= $400 / 1.700$ | 01121 | C1472S |
| A14R49 | 0757-0438 | 3 |  | RESISTOR $5.11 \mathrm{~K} 1 \%$. 1 己SEw F $70=0+-100$ | 24546 | C4-1/8-T0-5112 |
| A14R50 | 0633-2225 | 3 |  | RESISTOR $2.2 \mathrm{~K} 5 \% .25 \mathrm{C}$ FC TC= $-400 / 7700$ | 31121 | Cwazes |
| A1 4R51 | 0757-0279 | 0 |  | RESIETOR $3.16 \mathrm{~K} 1 \%$, 125W F TC=0+-100 | 24546 | C4, 1/8-T0-3161-F |
| A14R52 | 9757-0430 | 3 |  | RESISTOR 5.11 K \% .12EW F TE=0+-100 | 24546 | C4-1/G-T0-5111-F |
| Al 4 R53 | 0699-96347 | 9 | 1 | RESISTOR $1.5 K$, 1\% 12 ESW F TC=0tes | 29180 | 06,98-6347 |
| A14R54 | 0693-6936 | 2 | 1 |  | 20480 | 0676-6936 |
| A $14 \mathrm{RS5}$ | $0757 \cdots 0280$ $0757 \cdots 0448$ | 3 |  |  | 24546 24546 | $\begin{aligned} & C A-1 / 8-T 0-10 C 1-F \\ & C A-1 / B-T 0 \cdots 202 \cdots F \end{aligned}$ |
| A14R56 A $14 \mathrm{R} \%$ | [757-0447 | 6 | 3 |  | 24546 29480 | $\begin{aligned} & 64-1 / 8 \cdots 70 \cdots 2002 \cdots F \\ & 069 \cdots 0121 \end{aligned}$ |
| AlARSE | 0699\%-0122 | 8 | 1 | RESISTOR 4, BK , 1\% , 123. FF TCOD $+\cdots 25$ | 28480 | 0629-0122 |
| A14R60 | 0683-1015 | 7 |  | RESISTOR 100 5\% . 254 FC TC $=-400 / 4500$ | 01121 | Cet015 |
| A14R61 | 1683-1025 | 7 |  | RESISTGR 1 K 5\% . 25 SW FC TC= $-400 / 1600$ | 01121 | CR1025 |
| Al 4R62 | $0683-1015$ | 7 |  | RESTETOR $1005 \%$, 25W FC TC $=-400 / 4500$ | 81121 | Ca1015 |
| A14R63 | 06833-1025 | 9 |  |  | 01121 | C8102S |
| A1 4R64 | 0683-1025 | 7 |  |  | 01121 01121 | C8102S |
| A14R65 | 0693-1015 | 7 |  | RESTETCR $1005 \%$. 251 NFC TC $=-400 / 500$ | 0112. | Ce.jo |
| A14R60 A 14869 | $8683-1025$ $0683-1015$ | 9 |  |  | 01121 | C81015 |
| A14R7\% | 416,63-1033 | 1 |  |  | 01121 | C81035 |
| A14R77 | 0683--2225 | 3 |  | RESISTOR 2.2058 .254 FC TC=-406/4700 | 01121 | Cu2225 |
| Alar7b | 0633-1025 | 9 |  | RESIBTUR 1K $5 \%$, 25 4 FC TC= 400/1600 | 81121 | Cu1025 |
| Al 4 R001 | 0683-2215 | 1 | 1 |  | 01121 | crestis |
| A14R100 | 1683-2225 | , |  | RESTSTOR 2. $2 \mathrm{~K} 5 \%$, 25N FC 10 | 01121 | CR2225 |
| A14R101 | 0693-2225 | 3 |  |  | 01121 01121 | crezes c84705 |
| ATARTAE | 1603-4705 | 8 |  |  |  |  |

[^10]Table 6－3．Replaceable Parts

| Reference Designation | HP Part Number | $\begin{aligned} & C \\ & D \end{aligned}$ | Oty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A12R103 | 1757－0273 | 4 |  | RESISTOR 3．91K 1\％， 425 L F TC $=0+\cdots 100$ | 24546 34546 | $\mathrm{CA}-1 / 8 \cdot \mathrm{~T} 0-3011 \mathrm{~F}$ |
| Al AR104 A1AR195 | $17557-0283$ $0757-0396$ | 6 4 |  | RESISTOR RESISTOR 75 R 1\％ | 24546 24546 | $\begin{aligned} & C A \cdot 1 / \theta-T 0-2001-F \\ & C 4-1 / B-T 0-75 R 0-F \end{aligned}$ |
| A1AR195 | \％ 060.3 .1515 | 4 2 2 |  | RESISTOR $1505 \%, 25 \omega \mathrm{FC}$ TC＝－400 $2+600$ | 01121 | caisis |
| A14R13？ | $0 \times 570400$ | 9 | 1 |  | 24546 |  |
| A14R108 | 0693－4427 | 2 | 1 | RESISTOR $1.65 K 1 \% .1254 \% \mathrm{TC}=0+-100$ | 24546 | C4 1／8－row $651 \cdots$ |
| A14R1il？ | 10757－10420 | 3 | 1 | RESIETISR $7501 \%$ ，12らW F TCent－100 | 24546 | C4－1／8－70 751 F |
| A14R110 | 0683－22e5 | 3 |  | RESISTOR 2．2\％ $5 \%$ ，25W FC TCE－400 $0+700$ | $0 \times 121$ | ceaeas |
| 01412111 | $0683-2225$ | 3 |  | TEEISTCR 2．2K E\％25IN FC TC＝$-400 / 7700$ | 01121 | CB22es |
| A14R112 | 0．663－7505 | 2 | 1 | RESISTOR 75 5\％，25W FC TC $=-400 / 450$ | 01121 | ce7\％505 |
| A14R113 | 0757－1298 | 3 |  | RESTGTOR $1 \mathrm{~K} 1 \%$ ，125w FF TCa $0+-100$ | 24546 | CA． $1 / 8-\mathrm{TO-1001-F}$ |
| A 4 AR1：A A 14 R 116 | $0698-6317$ $0690-631 \%$ | 3 3 3 | 2 |  | 038888 33868 |  |
| A 14 R 117 | 0698－4123 | 5 | 3 | RESISTOR 497 1\％，125W F TC＝0＋－100 | 24546 | C4－1／8－70－499R－F |
| A A AR14日 | 0696－4123 | 5 |  |  | 24546 | C4－1／8－T0－497R－F |
| A14R119 | 1098－4435 | 2 |  | RESISTOR $2.49 \mathrm{~K} \quad 1 \% \quad 12 \mathrm{FW} \mathrm{FF}$ TC＝0．0－100 | 24546 | C4 1／8－70－2491－F |
| Al 48121 | 0603－22．5 | 3 |  |  | 01121 28460 | $\begin{aligned} & C 82525 \\ & 06936360 \end{aligned}$ |
| A1 4R122 A AR 123 | $16698-6360$ 06986320 | 6 6 8 |  | RESISTOR RESISTOR SK | $284 E 0$ $036 E 6$ |  |
| AIAR124 | 06，98－6330 | 9 |  | RESISTOR SK ． $1 \%$ ． 125 FW F TC＝0 $0-25$ | 03888 | PME55－1／8－79－5000－8 |
| Al4R126 | 0698．6320 | \％ |  | RESISTOR SK ． $4 \%$ ， 125 SL F TC $=0+-25$ | 03888 |  |
| A14R127 | 0698－6360 | 6 |  | RESISTOR $10 \mathrm{~K}, 1 \%, 125 \mathrm{~W}$ F TC：$=0+\cdots 25$ | 28480 | 06996－6360 |
| Al 4 R120 | 0696－6321 | 9 | 1 | RESISTOR 9．9K． $1 \%$ ，125 F F TC＝0＋－25 | 83886 |  |
| Al 4 R129 | 0698－3279 | 0 |  | RESISTOR 4，99\％ $1 \%$ ，12354 F TC $=0+\cdots 100$ | 2.45346 | C4 1／9－50－4971－5 |
| A1 \％ $\mathrm{R} \times 3 \mathrm{C}$ | $2100-3212$ | B | 1 | RESISTGR－1RMR $20010 \%$ C TOP－ADJ 1 －TRN | $2 \mathrm{Cl490}$ | $2100 \cdots 3212$ |
| A14R13： | 0757－0279 | 0 |  | RESSISTOR 3． 16 K 1\％． 12 SW F TC＝0 $0-100$ | 24546 | $\mathrm{C} 4-1 / 8-\mathrm{T} 0-3161-\mathrm{F}$ |
| A14R432 | 0696－3177 | 7 | 1 |  | 24546 01121 | C4－1／B－10－2551 C1：4705 |
| A1 AR13．3 Al | $0683 \cdot 4705$ 076,7843 | 8 <br> 3 |  |  | 01121 24546 |  |
| A14R136 | 10690－3557 | 7 | 1 | RESISTOR $8061 \% \cdot 125 W F T C=0+-100$ | 24546 |  |
| A14R137 | 0757－0416 | 7 | 4 | RESIGTOR $5111 \% .185 W$ FF TC＝0 +-100 | 24546 | C4－1／B－70－511R－F |
| A14R139 | 0757－0288 | 3 |  | RESIGTOR $1 \mathrm{~K} 1 \%$ ，125U F TC＝04－100 | 24548 | C4 1／E－T0 1001－F |
| A1AR139 | 0757－0230 | 3 |  | RESISTGR RESISTOR 402 RES \％ | 24546 24546 |  |
| A1 4R141 A1 4 R 142 | $0699-4453$ $2100-3409$ | 4 5 5 | 2 | RESIGTOR RESISTOR TRMR R | 28480 | 2100－3409 |
| A14R143 | 0698－4037 | 0 |  | RESISTOR 46．4 $4 \%, 125 W \mathrm{~F} T \mathrm{~T}=0+-100$ | 24546 | C4 1／日－70－46R4－F |
| A1 4 12144 | 0678－3279 | 0 |  | RESISTOR 4．99K $1 \%$ ，125 F F TC＝0t－100 | 24546 | $\mathrm{C} 4 \cdots 1 / 8 \cdots \mathrm{~T} 0-4991 \cdots$ |
| A1 4R145 | 0683－4705 | 8 |  |  | 01121 | CR4705 <br> C4．1／8－T0－4991－F |
| A14R146 | $0699-3277$ $0757-0442$ | 9 |  |  | 24546 24546 | C4－1／8－10－1002－F |
| Al 4 R148 | 3698－6617 | 0 |  | RESISTOR 15 水 ． $1 \%$ ，125W F $7 \mathrm{C}=3+-25$ | 23430 | 0699－6619 |
| A 48149 | 0690－6360 | 6 |  | RESISTOR $10 \mathrm{~K}, 1 \%, 125 W \mathrm{~F}$ TC $=0+-25$ | 28460 | 0699－6360 |
| A） 4 R151 | 16，98－18607 | 8 | 1 |  | 28490 | 66，98－8607 0699.0123 |
| A14R1SE | 0699－0123 | 9 | 1 | RESIGTOR 6．75k，1\％，125以 F TC＝0＋－250 | 28480 81121 | 0699－0123 C81035 |
| Al 4 R153 | 06813－1035 | 1 |  | RESISTOR 10K $5 \%$ ． 25 W F C TC $=-400 /+700$ | 01121 | CE1035 |
| A14R154 | 0683－4705 | 8 |  | REEISTOR 47 5\％． 255 W FC YC＝ $400 /+500$ | 01121 | CB4705 <br> CB1035 |
| A148156 | 0603－1035 | 1 |  | RESISTOR 10K $5 \%$ ，25W FC TCa $-400 /+700$ | 01121 01121 | $\begin{aligned} & C 81035 \\ & \operatorname{CHA705} \end{aligned}$ |
| A14R157 | 0683－4705 | 9 6 |  |  | 01121 24546 | CTA 705 C．4－1／6－T0－2002－F |
| A）AR159 | －0757－0449 | 6 |  | RESISTOR $20 \mathrm{~K} 1 \%$ ，125 F F TC＝0\％－100 | 24546 | C4－1／日－70－20．02－F |
| A14R160 | $0683-1055$ $0757-0273$ | 5 | 1 |  | 01121 245.46 | $\begin{aligned} & C B 1655 \\ & C 4-1 / 0-T 0 \cdots 3011-F \end{aligned}$ |
| A1 4R161 A1 AR162 | $0757-0273$ $0696-4475$ | 4 | 1 |  | 245.46 03868 | CA－1／E－T0…3011－F <br> PME55－1／日－T0‥9761－F |
| Al 4 R163 | 136，83－3935 | 4 | 1 | RESISTOR $39 \mathrm{~K} 5 \%$ ． 2 SH FC TC－$-400 / 4800$ | 01121 | C53935 |
| A14R16．4 | 0698－4382？ | B | 1 | RESISTOR $52.31 \%$ ，125W F TC＝0＋ 100 | 24546 | C4－1／8－T0－52R3－F |
| A14R166 | 6757－1401 | ， |  | RESTSTOR $1001 \%, 125 W$ F TC＝0－ 100 | 24546 | C4－1／8－T0－101－F CE6B15 |
| A 1 4R16， | 0683－6015 | 5 |  | RESTSTOR 680 5\％，25，FC TE＝－400／＋600 | 01121 | CE6B15 <br> CE1015 |
| A14R169 | 8683－1015 | 7 |  | RESISTOR $1005 \%, 25 W$ FC RESTSTOR $5.11 \% ~$ TC | 81121 <br> 24546 | $\begin{aligned} & \mathrm{CE} 1015 \\ & \mathrm{C} 4-1 / 13-\mathrm{T} 0-5111-\mathrm{F} \end{aligned}$ |
| A14R20］ | 11757－0433 | 3 |  | RESISTOR 5.11 K REST | 2.4546 2.4546 | CA－1／B－T0－511－F $\mathrm{C} 4-1 / 8-\mathrm{T} 0-5111-\mathrm{F}$ |
| Al 4 R20\％ | 0757－m438 | 3 |  | RESISTOR 5．11K 1\％，12．5W F $\mathrm{FC}=0 \%-100$ |  |  |
| A14R211 | 18633－4735 | 4 | 3 |  | 01121 | CE4735 |
| A 1 AR212 | 0683－1025 | 9 |  | RESISTOR RESISTOR R | 01121 01121 | $\begin{aligned} & \operatorname{CE1} 125 \\ & \text { CB1025 } \end{aligned}$ |
| A14R214 | 06833－1025 | 9 |  | REBISTER $1 \mathrm{~K} 5 \%$ ， 25.4 FC TC $=-400 \%+600$ | 01121 01121 | $\begin{aligned} & \text { CB1 } 0255 \\ & \text { C51035 } \end{aligned}$ |
| A14R215 A1 4R216 | $0663-11135$ $0683-2235$ | 1 |  |  | 01121 | C82235 |
| A14R217 | 01603 －－2355 | 5 |  | RESISTOR 22k 5\％， 25 W FC TC＝－400／＋800 | 01121 | C62235 |
| A14R219 | 0693－2205 | 7 |  | RESISTOR $225 \%$ ． 25 FWC F TC $=400 /+330$ | 01121 | C82205 |
| A14R220 | 0757－040： | ${ }_{0}^{8}$ |  | RESISTOR 100 RESISTOR SK | 24546 03888 | C4－1／0－70 $101-\mathrm{F}$ Y MESE－1／8－T＇ 5001 － Et |
|  | $06,98-6320$ $0683-4705$ | 8 8 |  | RESISTOR SK RESISTOR 47 $5 \%$ $5 \%$ | 13888 01121 | CEA705 |
| A14R223 | 1083－4705 | 9 |  | RESISTOR $475 \%$ ． 250 FFC TC $=-400 /+500$ | 01121 | C84705 |
| A 148224 | 0757－0276 | 7 |  | RESISTOR $61.91 \%$ ，125w F TC＝tat－100 | 24546 | $C 4-1 / 8-70-6192-F$ |
| A1 4R23G | 87570．0437 | 2 | 1 | RESISTOR 4．75K 1\％． 125 W F TC＝0＋ 100 | 24546 | C4－1／8－70－4751－F |
| A AR229 | 0757－0405 $0683-2205$ | 4 | 2 | REESISTOR 162 $1 \%$ ，125 F F TC $=0+\cdots 100$ | 24546 | C4．－1／8－T0－162R－F |
| A1 4R229 |  | 7 |  |  | ग121 | Catas |

Table 6－3．Replaceable Parts

| Reference Designation | HP Part Number | $\begin{gathered} \mathrm{C} \\ \mathrm{D} \end{gathered}$ | Oty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A14R231 | 0757－0277 | ${ }^{8}$ | 2 | RESTSTUR $49.91 \%$ ． 125 W F $76=0+\cdots 100$ | 24546 | C4－1／8－T11－4992－F |
| A 148232 | 0755－0317 | 7 | 4 | RESISTOR 1， 33 K 1\％，12：S4 F TC $=00+-100$ | 24546 | C4．1／8．Tn 1331－F |
| A14R233 | 06033－1295 | 7 | 2 | RESISTOR 12 5\％．2SLN FC TC＝－400／1500 | 01121 | $\mathrm{craz}^{\text {ches }}$ |
| A1．4R234 | $0683-13395$ $0757-0436$ | 4 | 2 | RESESTRR RESIETOR $5.9 .95 \% ~$ | 01121 24546 |  |
| A1．4R236 | 0757－0436 | 3 |  |  | 24546 | C41／83－70－5111－F |
| A14R237 | 0757－0436 | 3 |  | RESISTOR $5.11 \mathrm{~K} 1 \%$ ，125以 F TCO $=0+-100$ | 24546 | C4 1／8．－T0－511－F |
| A14R233 | 9683－1445 | 3 |  |  | 01121 | C31045 |
| A14R239 | 0683－4705 | 8 |  | RESISTOK $475 \%$ SEW FCC TC＝－400／＊500 | 01121 | ${ }_{\text {CB4705 }}$ |
| A1 48.241 A $14 R 242$ | $0683-4795$ $0637-4701$ | － | 4 |  | 01121 0.121 |  |
| A14R243 | ก687－4701 | 2 |  |  | 01121 | E64701 |
| A1 4R244 | 0957－64．65 | 6 | 3 | RESISTOR $100 \mathrm{~K} 1 \%$ ，12SU F $T C=0+-100$ | 24546 | C4－1／8－70－1003－F |
| A14R245 | 0683－2205 | 9 |  |  | 01121 24546 |  |
| Al 48245 A1 4 R $24 \%$ | $0757-0230$ $0757-0465$ | 3 6 6 |  | RESISTOR RESISTER 10， R | 24546 2.4546 | $\begin{aligned} & C A-1 / G-T 0-1001-F \\ & C A-1 / E-T 1003-F \end{aligned}$ |
| A14R249 | 0693－2205 | 9 |  | RESISTOR $225 \%$ ． 254 FC TC＝$=400 /+500$ | 01121 | cse205 |
| A148249 | 0683－0275 | 7 | 2 | RESISTOR $2.75 \%$ ． 254 FC TC\％ $400 / 500$ | 01121 | ceer 76 |
| A148250 | 0フ57－0442 | 9 |  | RESISTOR $10 \mathrm{~K} 1 \%, 1250$ F TC＝0＋6 100 | 245.46 | CA．1／8－T0 01008 F |
| Al4R251 | $0683-0275$ | 9 |  | RESIGTOR $2.75 \%$ ， $254 \mathrm{FC}, \mathrm{TC=}=400 / 4500$ | 31121 | cwe7es |
| A1482．52 | 0699－0064 | 7 | $\pm$ | RESISTOR 56，1\％，54 F TC＝0\％－25 | 28480 | 0699－1064 |
| A 4 4R233 | 0687－4701 | 2 |  | RESTSTOK $4710 \%$ ．5w Cc TC $=0+412$ | 01121 | E184701 |
| A1．4R2ss 4 | 11757－0402 | 1 | 1 |  | 24546 | C4 1／0－T0－111－F |
| A 4 AR25 | 0757．0230 | 3 |  |  | 24546 | $\mathrm{C}_{4} 1 / \mathrm{B}-\mathrm{T},-1001 . \mathrm{F}$ |
| At 4R256， | 0757－0280 | 3 |  |  | 24546 | C4－1／8－70－1001－F |
| A14R257 | 0\％57－1283 | 6 |  |  | 24546 | C4－1／8－50－2001－1．5 |
| At 4 R25s | 0663－6205 | 9 |  | RESISTOR $225 \%$ ，25w FC TC $=400 /+500$ | 01121 | Csezos |
| A14R255 | 075\％－0442 | 9 |  |  | 24546 | CAM 1／8－70－1002－F |
| A14R260 | 0687－4701 | 2 |  | RESISTOR $4710 \%$ ，5W CC TCE $0 \cdot 4.412$ | 01121 |  |
| Al 4 R 261 At AR262 | 1757－0442 $0683-4705$ | B |  |  | 24546 01121 | $\begin{aligned} & \mathrm{CA} 1 / 8-\mathrm{TO-1032-F} \\ & \text { CuA\% } \end{aligned}$ |
| At 4R262 | 0683－4705 |  |  | RESISTOR $475 \%$ ，25\％FE TLE－400\％＋500 |  |  |
| A14R263 | 0603－0605 | 5 | 2 | RESTGTOR $6.85 \%$ ，25W FC TC＝－400／＋500 | 01121 | Crgass |
| A） 4 R 264 | 0683－0685 | 5 |  | RESSSTOR $6.85 \%$ ，256 FC TC $=-400 /+500$ | 01121 | CR6965 |
| At 48 RGS | 0698－4388 | 4 | 1 | RESISTOR $63.41 \%$ ，125W F TC：0＋100 | 24546 | CA－1／8－T0－63R4．F |
| A14R266 | $16988-4454$ $0.883-4705$ | 1 | 1 |  | 24546 01121 | $\begin{aligned} & C 4-1 / 8 \cdots(0-324 R-F \\ & C 34705 \end{aligned}$ |
| A14R26．6 | 0583－4785 | 0 |  | RESICTGR $475 \%$ ， 2514 FC TC： $4000 / 4500$ | 01121 | C84705 |
| A14R270 | 0690－3492 | 9 | 1 | RESIGTOR $2.67 \mathrm{~K} 1 \%$ ，12ESN F TC＝ $6+\cdots 100$ | 24546 | C4－1／8－T0－267 ${ }^{\text {c }}$ F |
| Al 4 R 271 | 0\％57－0485 | 4 |  |  | 24546 | C4 $1 / 8 \cdots$－ $0 \cdots 162 \mathrm{CWF}$ |
| A14R272 | 0603.2205 | 9 |  | RESISTOR 22 5\％，23W FC TC＝ $400 /+500$ | 31121 |  |
| Al 4 R273 | 07137－0277 | 8 |  | RESISTOR 49，9 1\％． 1 25W F TCmen－ 100 | 2.4546 | C4ㅍ1／日 - T6－4992－F |
| A14R27．4 | 19737－0317 | 7 |  | RESISTOR $1.33 \mathrm{~K} 1 \%, 125 \mathrm{~W}$ F TC＝ $0+\cdots 100$ | 24546 | C．4－1／8－T0－1331－F |
| A14R27s | 2100－3409 | 5 |  | RESSSTTOR－TRMR 20 10\％C TOP－ADJ I－TRN | 23488 | 21003409 |
| A14R276 | 0683－0395 | 4 |  | RESISTOR 3．7 $5 \%$ ，25 \％FC TC＝－400／4500 | 01121 | CE396S |
| A1AR27\％ | 0683－1205 | 7 |  | RESTETOR 12 5\％，25w FC TC－ $400 /+560$ | 01121 | cos 205 |
| A14R27日 | 0757－0209 | 7 | 1 | RESTSTOR $5.62 \mathrm{~K} 1 \%$ ，125w F TC＝0 $+\cdots 100$ | 2.4546 | C．4－1／8－70－5623－F |
| A14TP18 | 1251－4822 | 6 |  | CONNECTOR 3－PIN M POST TYPE | 28480 | 1251－4822 |
| A1431 | 1820－1196 | 0 |  | IC FF TTL LS D－TYPE POS EDEEE－TRIG COM | 91295 | SN74LS174N |
| A． 402 | 1820－1197 | 9 |  | IC GATE YTL LS NAND QUAD $2 \cdots$ INP | 61295 | 5 SN 74.5800 N |
| A14．43 | 1826－0476 | 7 |  | IC SWITCH ANLG B－DIP－P PKG | 01295 | TL． 6016 CP |
| A1444 | 1926－0476 | 7 |  |  | 012913 27014 |  |
| A14U5 | 1826－8304 | 0 | 3 | IC．OP filf L Lid－BIAS－H－TMPD TO－g9 PKG | 27014 | Lrs5is |
| A14 46 | 1820－1279 | 7 | 5 | TC CNTR TTL LS EIN HP／DOWU SYNEMRO | 01295 | SN74LS191N |
| A1447 | 1820－1279 | 8 | 5 | IC CNTR TTE LE DECD UP／DOWN GYNCLIRG | 01295 | SN74LS19 3 |
| Al 4 Uls | 1820－1279 | 8 |  | IC CNTR TTL LS DECD UP／DOUN SYNCHRO | 01295 01295 | SN゙74LS190N SN74LS190N |
| A14U9 A14U10 | $1820-1279$ $1820-1282$ | B | 1 | IC CNTR TTL LS DECD UP／DONA SYNCHRO IC FF TTI．LS J－K BAR POG－EDGE－TRIG | 01295 01295 | SN74LS190N |
| A14U10 | 1620－1202 | 3 | 1 |  |  |  |
| A14J11 | 1820－1112 | $B$ |  | IC FF TTL LS D－TYPE POS－EDCE－TRIG | 31295 | SN74LST4AN |
| Al4us | 1028－1112 | 8 |  | IC FFF YTL LS D－TYPE POS－EDCE－TRIG | 01295 | SNTALST4AN |
| A14U13 | 1820－1423 | 4 | 2 | IC MV TIL L．S MONOSTEL REIRIG DUAL | 01295 | 5N\％4LS ${ }^{\text {d23N }}$ |
| A14u14 | 1020－0693 | 8 |  | IC FF TTL S D－TYPE POS－EDGETRTG | 01293 | SN74S74N |
| A14019 | 1821－0001 | 4 | 2 | TRANSISTOR ARRAY 14－pIN PLSTC dip | 31.585 | Ca3046 |
| A14L16 | 1826－0384 | 0 |  | IC OP AMP LOW－BIAS H－IMMPD TO－79 PKG | 27614 | LF3SEH |
| Al 4017 | 1826－0304 | 0 |  | IC EP AMP LOM－DIAS H－IHPD TO－99 PKG | 27014 | LF35SH |
| A14U18 | 1826－0209 | 3 | 5 |  | 37014 27014 | L．M310N |
| A14U19 A1 4020 | $1626-8298$ $1626-11416$ | 3 5 | 2 |  | 27014 27014 | L－F13331D |
| Al4U21 A1 AU2 | $\begin{gathered} 1826-0208 \\ 18226-0208 \end{gathered}$ | 3 |  |  | 27014 27014 | LM310N LM310N |
| A14U24 | 1826－1416 | 5 |  | Ic．SWITCH Aidle quad 16－DIP－C PKG | 27014 | LF 13331D |
| At 4 y 25 | 1826－0208 | 3 |  | IC OP AMP GP E－DIP－P PKG | 27014 | LM310N |
| A14126 | 1820－1730 | 6 |  | IC FF TTL LS D－TYPE POS－EDCE－TRIE COM | 31295 | SN74LS273N |
| A14 1427 Al 41529 | $1820-1216$ $1820 \sim 1196$ | 3 |  | IC DCDR TTLL LS 3－TO－8－LINE 3－INP IC FF TTL LS D－TYPE POS－EDGE－TRIG COM | $\begin{aligned} & 01295 \\ & 01295 \end{aligned}$ | $\begin{aligned} & 9 N 74 L S 139 \mathrm{~N} \\ & 3 \mathrm{~N} 74 \mathrm{LS174N} \end{aligned}$ |
|  | $1820-1196$ $1620-1730$ | 8 |  | IC FF TTL LS D－TYPE POS－EDGE－TRTG COM | 01295 | SN74L5174N |
| A141330 | 1820－1641 | a | 2 | IC DRUR TTL．Ls EUS drur hex 1－inf | 01275 | SN74I－5365AN |
| A14432 | 1920－1199 | 1 |  | IC INU TTL LSS HEX 1 －INP | 01295 | SN7ALSO4N |

[^11]Table 6-3. Replaceable Parts


See introduction to this section for ordering information

* Indicates factory selected value

Table 6-3. Replaceable Parts

| Reference Designation | HP Part Number | $\left\lvert\, \begin{aligned} & C \\ & D \end{aligned}\right.$ | Oty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A21c.71 | 0190-1746 | 5 |  | CAPACITOR - $\times$ PD 15UF+-10\% 20UDC TA | 56289 | $1500156 \times 902082$ |
| A21C173 | 0190-10229 | 6 |  |  | ${ }_{5}^{56389}$ | ${ }_{0}^{1501622689201582}$ |
|  | $0160-2204$ $0160-0571$ | 0 | 1 | CAPACITOR -FXD CAPACITOR-FXD 470PF | 28480 28480 | - $0160-2204$ |
| A21C. 177 | 8160-3879 | 7 |  | CAPACITOR - FXD . DiUF +-20\% 100 VDC CER | 28480 | 0160-3079 |
| A21617B | (0160-3947 | 9 |  | CAPACITOR-FXD - $010 \mathrm{FF}+109-8 \% 500 \mathrm{DDC} \mathrm{CER}$ | 2 a 480 | $0160-3847$ |
| A21c179 | 0160-4040 | 6 | 1 | CAPACITOR-F XD $1000 \mathrm{PF}+5 \mathrm{~F}$ - 100 VDC CER | 28480 | 0160-4040 |
| A21C181 | 0160-2204 | 0 |  | CAPACITOR-FXD 10 QPF +-5\% 300VDC MICA | 28480 | $0160-2204$ |
| AE1C182 | 0160-4441 | 1 | $t$ | CAPACTTOR-FXD, 47UF + $10 \% 50 \mathrm{VDC}$ CER | 28480 | 0160-4441 |
| A 216133 | 0160-0127 | 2 | 2 | CAPACTTOR-FXD 1UF*-20\% ZSUDC CER | 29480 | 0160-0127 |
| A21C184 | 0160-3847 | 9 |  | CAPACITOR-FXD , Q1UF +100-0\% SOUDC CER | $2 \mathrm{B4B0}$ | 0160-31847 |
| A 1 16195 | 0160-3847 | 9 |  |  | 28480 | 0160-3847 |
| A216186 | $0160-3847$ | 9 |  | CAPACITOR FXD . B1UF +100-0\% YOUDC CER | 28480 | 0160-3847 |
| A 216187 A2, A | $0160-3847$ $0160-127$ | $\stackrel{9}{2}$ |  | CAPACKTOR-FXD CAPACITOR-FXD IUF | 28480 | $01600-3847$ $3160-0127$ |
| A21C190 | 0160-4571 | 8 |  | CAPACITOR - FXD , 1UF + $80-2.0 \%$ SOUDC CER | 28490 | $0160-4571$ |
| A Aldicis | 0160-3676 | 4 | 1 | CAPACTTOR -FXD $47 P 5+\cdots 20 \% 200 \cup D C$ CER | 28483 | 0160-3876 |
| A21-196 | 016004283 | 9 | 2 | CAPACITOR --FXD 100PF +-5\% 200UDC CER | 51642 | $150 \cdots 100-\mathrm{NFO} \mathrm{O}-101$ |
| A21C:97 | 0160-4283 | 9 |  | CAPACITOR FFXD $100 \mathrm{PFF}+-5 \%$ 200UDC CER | 51642 | 150-100-NP0-101 |
| A 210 CR 1 | 1901-0040 | 1 |  | DXODE--5WITCHINE 304 5日MA 2NS DO-35 | 28480 | 1901-0040 |
| A $21 \mathrm{CR2}$ | 1901-0040 | 1 |  | DIDDE-SWITCHING $30 \cup$ 50MA $2 N S$ DO-35 | 28480 | 1701-0040 |
| A2, 1CR3 | 1901-8518 | 8 |  | DIODE--5M STG SCHOTTKY | 29480 28489 | $1981-0518$ 1901.0518 |
| AZ1CR4 A 21085 | $1901-19518$ $1901-0040$ | 8 <br> 1 |  | DIODE-3M SIG SCHOTTKY DIODE-SUITCHING $30 \cup 50 \mathrm{MA}$ 2NS DO-35 | 28489 28480 | 1901-6040 |
| AR1CRS |  | 1 |  |  |  |  |
| A 21 crg | 1902?-0777 | 3 |  | DIUDE-ZNR 1NEES 6, 巳U 5\% DO-7 PD=,41 | 04713 | 1 N825 |
| AE1CR 7 | 1902-677\% | 3 |  | DIODE - -ZNR INE25 6. 2 V V 5\% DO-7 PD $=$, 4W | 04713 | $1 \mathrm{NG225}$ |
| A 2 ICRA | 1901-0518 | 8 |  | DIODE-SM SIT SCHOTTKY | 28480 | 1901-6518 |
| A2. 1 CR9 | 1901-0518 | 8 |  | DTODE-SM STG SCHOTTKY DIODE-SWITCHING $30 \cup$ SOMA | 28480 28480 | 190100518 $1981-0040$ |
| A21CR11 | 1901-0043 | 1 |  | DIODE-SWITCHING 30U SOMA 2NS DO-35 |  | 19010040 |
| A 1 PR 12 | 1901-0040 | 1 |  | DIODE-SUITCHING 30U 50MA 2NS DO-35 | 28480 | 1901-0040 |
| A 1 CR 13 | 1931-0040 | 1 |  | DIDDE-SWITCHINC 304 50MA 2 NS DO-35 | 28480 | 1901-0040 |
| AC1CR16 | 1901-0040 | $\frac{1}{5}$ |  |  | 29489 28480 | $1901-1048$ $1932-3054$ |
| ${ }^{\text {A } 21 C R 17}$ | $1902-3854$ $1902-0064$ | 5 | 1 2 |  | 28480 28480 | $1932-3054$ $1902-0064$ |
|  | 1902-0064 | 1 | 2 | DILODE-7.NR 7.5V 5\% DO-35 PD= . 4 W TC=-4.05\% | 29480 | 1902-0064 |
| A $216 R 19$ | 1992-8064 | 1 |  | DIODE-ZNR 7 5 S $5 \%$ DO-35 PD=, 4 NW TE $=+.05 \%$ | $2 \mathrm{CB4B0}$ | 190200664 |
| ABlicren | 1901-0040 | 1 |  | DITDE-SWITCHING $30 \cup$ SGMA ZNE DO-35 | 28480 | 1901-0040 |
| A2, ${ }^{\text {a }}$ (cri31 | 17902-3030 | 7 |  | DIDDE- 7 NR 3 3,014 $5 \% \mathrm{DC}-7 \mathrm{PD}=.4 \mathrm{~W}$ TC $=-.067 \%$ | 23490 | 1932-3030 |
| A2.1CR161 | 1981-0518 | B |  |  | 28460 | 1901-0518 |
| AC1CR162 | 1901-0040 | 1 |  | DIODE SWITCHING 30U SOMA 2 NSS DO-35 | 26489 | 1901-0049 |
| A21CR163 | 1901-0518 | 8 |  | DIODE-SM SXG SCHOTTKY |  | 1961-0519 |
| A21CR164 | 0122-0089 | 5 |  | DJODE-UVE 29PF 10\% C3/Cas minw 5 BUR=30U | 04713 |  |
| $A^{\text {A }}$ ICR165 | 1901-0518 | $\stackrel{8}{8}$ |  |  | [28480 | $1901-0518$ MV109 |
| A $21 C R 166$ | 0122-0089 | 5 |  |  | 14713 | Mu109 |
| A 21.11 | 1251-6567 | 0 |  | CONNECTOR 21-PIN M POST TYPE | 29480 |  |
| ${ }_{\text {A } 21.153}$ | 1810.0294 $1251-2969$ | 4 | 1 | NETWLIRK-RESTSTGR 16 PIN DIP, RES CONNECTOR-PHONO SINGLE PHONG JACK; DIP | 288480 | 1810.0294 $1251-2969$ |
| A $21 J B$ A 21.115 | $1251-2969$ $1251-2969$ | 8 8 8 |  | CONNECTOR-PHONO SINGLE PHONG JACK; DIP CONNECTOR-PHENO SESGLE PHONO JACK; DIP | $\underset{28480}{28480}$ | 1251-2969 |
| ${ }_{\text {A } 2,1 J 15 ~}^{\text {a }}$ | - | $\stackrel{\text { ¢ }}{\text { a }}$ |  | CONNECTOR-PHONO STNGLE PHONO JACK; DIP | 26480 | 12.51 2969 |
| A21J17A | 1251-2969 | 8 | 33 | CONNECTOR-PHOND STNELE PYGND JACK; DIP | 28480 | $1251-2969$ |
| A21J17 | 1251-2.969 | ${ }^{8}$ |  | CONNECTOR PHONE STNELE PHONO JACK; DIP | 28480 | 1251-2969 |
| A21718A | 1251-2969 | $8^{8}$ |  | CONNECTOR-PHOND SXNGLEE PRCNO JACK; DIP | 28469 28480 | 1251-2969 |
| A 21 JlBE | 1251-2969 | 8 |  | CONNECTOR - PHONO SINCAE PHONO JACK; DIP | 28480 | $1251-2969$ |
| A2.14. | 9100-1622 | 7 |  |  | 23480 | $9100-1622$ |
| AC̈ 11.2 | 9100-1622 | 7 |  |  | 20480 | $9100-1622$ $9100-1791$ |
| A ${ }^{\text {a } 11.3}$ | 9100-1791 | 1 |  | INDUCTOR 290NH $20 \%$, 23DX, 375 LG | 23460 | $91080 \cdot 1791$ $9100-1791$ |
| ${ }^{\text {A2P14.132 }}$ | $9108-1791$ 9170.9894 | 1 |  | INDUCTOR 29ONH 28\% .23IX, 37ELG | 23460 23485 | $9100-1791$ $9170-0894$ |
| A2.11.133 | 9170-9894 | ${ }^{1}$ |  |  | 2 S 48 | - |
| A 21 LL 161 | 9100-179 | 1 |  | TNDUCTOR $290 \mathrm{NH} 20 \%, 23 \mathrm{DX}, 375 \mathrm{E}$, | 28480 | $9100-1791$ |
| AP3L162 | 9140-0460 | 3 | 1 |  | 234818 | 9140-0460 |
| A2, 21.163 | 9100-0539 | 3 |  |  | 29480 86480 | 9100.0539 $9140-0349$ |
| AE2L16 165 | 7140-0349 | 7 |  |  | 28480 | 9140-0349 |
| A2191 | 1983-0449 | 0 |  | TRANSISTOR FNE SI. TO-72 PD=6ESTW | 04713 | ${ }_{\text {MPSHat }}$ |
| A2.183 | 1853.0448 | 0 |  |  | 04713 | MP $51 / 131$ |
| AE193 | 1854-0345 | 8 | 5 | TRANSTSTOR NPN $2 N 5179$ St TO-72 PD=2604 | 04713 | 2NS179 |
| A2:104 | 13553-0448 | 0 |  | TRANSTETOR PNP ST T0-92 PD=625M14 | 04713 07263 | ${ }_{\text {MPS }}{ }_{\text {M }}$ |
| A2.106 | 19853-01089 | 5 |  | TRANSTSTOR PNP 2N4917 SI PD=200m | 07263 |  |
| A2147 | 1653 30089 | 5 |  | TRANSISTCR PNP 2N4917 SI PDmemom | 07263 | 2N4917 |
| A2198 | 185,3-0089 | 5 |  |  | 07263 28480 | 2 N 4917 |
| A2:109 | $13354-0296$ $1853-0089$ | 5 | " |  | 28480 | 1854-12966 |
| AR1810 | 1853-8089 | ${ }^{1}$ |  | TRANGISTOR NPN SI TO-92 PD=310MW | 28430 | 1854.0296 |
| A 1012 | 1053.0089 | 5 |  | TRANSTSTOR PNP 2NAF17 ET PD=200MU | 87263 | 2N.4917 |
| A 21013 | 1854-0296 | ${ }^{8}$ |  | TRANSISTLR NPH SIT TO-92 PD=310MW | 28403 | 1854-0296 |
| AR1916 4.219 .7 |  | 5 | 1 | TRANGISTOR - JFET DUAL N.CLIAN D-MODE SI | 28430 | $16550-0308$ |

See introduction to this section for ordering information
*Indicates factory selected value

Table 6－3．Replaceable Parts

| Reference <br> Designation | HP Part Number | $\begin{aligned} & C \\ & D \end{aligned}$ | Oty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A21918 | 1055－0061 | 1 |  | TRANSTSTLR J－FET N－CHAN D－MODE SI | 23480 | 1655－0081 |
| AE1Q19 | 1 1055－6081 | 1 |  | TRANETSTOR J FET N－CMAN D－MODE SI | 23480 | 1955－0091 |
| A21621 | 1855－－0032 | 2 | 2 | TRANSTSTOR J－FET P－CHAN 3 ITODE SI | 23480 | 1854－0．032 |
| A2 1023 | 1854－0215 | 1 |  | TRANSISTOR NPN SI PD $=350 \mathrm{MW}$ FT＝30 OMLZ | 04713 | 2N3904 |
| AE1Q23 | 1854－1215 | 1 |  | TRANSISTCK NPN SI PDF350mid FTE＝ 300 MHZ | 04713 | 2N3994 |
| A21024 | 1954－0215 | 1 |  | TRANSISTOR NPN SI PDO $=350 \mathrm{MW}$ FT＝30GM4\％ | 04713 | 2N3904 |
| A 21025 | 165300889 | 5 |  | TRANSISTOR PNP SNAT17 SI PD | 9726，3 | 2 N 4717 |
| A21936 | 1854－0215 | 1 |  | TRANSISTOR NPN SI PD＝354it FT＝300MHZ | 04713 | $2 \times 3904$ |
| AB1027 | 1955－0081 | 1 |  | TRANSISTUR T－FET N－CHAN D－MODE SI | $2 \mathrm{E4EO}$ | 10550001 |
| At：1028 | 1054－0296 | 8 |  | TRANGISTOR NPN SI TO－92 PD＝ 310 MW | 26400 | 1054 0296 |
| A 210 E 9 | 1354－0296 | 8 |  |  | 28430 | 1054－10296 |
| A 21031 | 1953－6089 | 5 |  | TRANSTSTOR PNP 2NA917 GI PD＝200MW | 07263 | 2N．4917 |
| A 10332 | 18554－0830 | 6 | 1 |  | 27014 | LM3？4 |
| A 21033 | 1853－0082 | 2 |  | TRANSISTOR J FET P－－CHAN D－MODE SI | 29480 | 1855－0002 |
| 421937 | 1854－1215 | 1 |  | TRANSTSTOR NPN SI PD＝350Yid FT $=300 \mathrm{MHZ}$ | 04713 | 2N3904 |
| A21038 | $1953 \times 0086$ | 2 | 1 |  | 27014 | 2N： 097 |
| A 10369 | $1055 \cdot 0081$ | 1 |  | TRANSISTOR J FET N－CHAN D MODE SI | 2B4B0 | 1855－0081 |
| A21941 | 1954－0296 | 8 |  | TRANSISTOR NPN SI T0－72 PD＝310MW | 23480 | 18314－0296 |
| AR10．42 | 1054．0296 | 0 |  | TRANSISYOR NPN SI TO－92 Pjman otil | 29400 | 1854－0296 |
| A231043 | 1953－0089 | 5 |  | TRANSISTOR PNP 2N4917 ST FD＝200MW | 07263 | 2N4917 |
| A21844 | 1053－0069 | 5 |  | TRANGKSTOR PNP 2N4917 3I PDecolimw | 07263 | $2 \mathrm{NA}^{2} 97$ |
| A2， 10131 | 19533－0448 | 0 |  | TRANSISTOR FNP SI TO－92 PD | 04713 | mpenal |
| Amiq132 | 1854－6071 | 7 |  | TRANSISTOR NPN GI PD＝300MW FTac3 0 Mitz | 29430 | 1854－0072 |
| AE19161 | 1853－0448 | 0 |  | TRANSTSTOR PNP ST TO－92 PD＝625MW | 04713 | mpshal |
| A2：1Q162 | 1854．0345 | B |  |  | 04713 | 2N5179 |
| A 210163 | 1354．0345 | ${ }^{8}$ |  | TRANSISTOR NPN 2NS 179 S：T0－72 PD＝200M | 04713 | 2 2 5179 |
| AC1P164 | 1054－10345 | ${ }^{8}$ |  | TRANSISTCR NPN $2 N 5179$ SI TO－72 $\mathrm{PD}=200 \mathrm{KW}$ | 04713 | 2 N 5179 |
| $A^{4} 19165$ | 1954－0345 | 8 |  | TRANSISTOR NPN 2NS179 SI TO－72 PD $=200 \mathrm{MW}$ | 04713 | $2 \mathrm{N5179}$ |
| AETQ16， | 1353－0448 | 0 |  | TRANSISTLIR PNF＇SI TO－92 PD＝625mb | 84713 | MPSt198 |
| A2，1RI | 0757－6395 |  | 2 | REGISTOR $56.21 \%$ ，125w F TCm0＋－100 | 24546 | C4－1／8－T0－56R2－F |
| A21R2 | 0757－0419 | 0 | 3 | RESISTOR $6811 \%$ ，12SiN F $1 \mathrm{C}=04-100$ | 24546 | C4－1／8－T0－601R－ 7 |
| AE1R3 | 0757－0419 | 0 |  | RESISTOR 681 $1 \%$ ，12S5W F TC $=0.4-100$ | 24548 | C4－1／8－TG－ $681 \mathrm{R}-\mathrm{F}$ |
| A2IR4 | 0603－4．705 | ${ }^{8}$ |  | RESISTOR 475\％． 2 SWW FC TC＝ $404 /+500$ | 01121 | C0．4705 |
| ACPR | ロソ57～0421 | 4 | 3 | RESISTOR 825 $1 \%$ ，125 F TC $=0+\cdots 100$ | 2.4546 | C4－1／8－TG－825R－F |
| AETR7 | 0683－4715 | 0 |  | RESISTOR 470 5\％．23N FC TC＝$=480 / 4600$ | 01121 | CE4715 |
| A21R日 | 06883－4705 | 8 |  | RESISTOR $475 \%$ ， 255 W FC TC＝－400\％+500 | 01121 | CE4705 |
| $\mathrm{A}_{2} 18 \mathrm{R}$ | 0698\％3440 | 7 |  | RESISTOR 176 1\％，125 F F TC $=01-100$ | 8：4546 | C4－1／0－70－196R F |
| A $21 \mathrm{R} 1:$ | 0693－2205 | 9 |  | RESISTOR 22 $5 \%$ ，25w FC，TC $=-400 /+500$ | 01121 | CE2205 |
| A21k12 | 0757－0438 | 3 |  |  | 24546 | C4－1／8－Ta－st11－F |
| A2．1R13 | 0757－18438 | 3 |  | RESISTOR 5．11K $1 \%$ ，1253 FF TC $=0+\cdots 100$ | 2.4546 | CA－1／8－T8－5111－F |
| A 21814 | 0757\％ 0410 | 7 | 2 |  | 24546 | C4 1／B－T0－6192－－F |
| AE1R16 | 0757－0440 | 7 | 1 | RESISTOR $7.5 \mathrm{~K} 1 \%$ ， 125 S F TC $\times 0+-100$ | 24546 | C4－1／8－70－7501－F |
| AE1R17 | 0698－3152 | 8 | 1 | RESESTIOR 3， $4 \mathrm{EK} 1 \%$ ，125W F TC $=0+\cdots 100$ | 24546 | C4－1／8－T0－3481‥F |
| A2 1 R18 | 0757－0444 | 1 | 2 | RESISTOR $12.1 \mathrm{~K} 1 \%$ ． 125 F F TC＝0\％－100 | 24546 |  |
| AR1r19 | 1757－0278 | 9 | 1 |  | 24546 | CA 1／8－70－1781－F |
| A 1 IRE1 | 06833－4705 | 9 |  | RESISTOR 47 5\％，ESW FC．TC $=\cdots 400 /+500$ | 01121 | CBa70s |
| A SiR2a | 0683－1525 | 4 |  | RESISTOR $1.5 K 5 \%$ ，254 FC TC $=-400 /+700$ | 01121 | CB152S |
| A21R23 | 06，83－6，915 | 5 |  | RESTSTOR 690 5\％，25W FC TC＝－400／4600 | 01121 | CE6815 |
| A21R24 | 1683－1825 | 7 |  | RESISTIR $1.8 \mathrm{~K} 5 \%$ ． 25 NF FC TC $=-400 /+700$ | 31.21 | Cbib25 |
| A21R26 | 0757－0395 | 1 |  | RESISTOR $56.21 \%$ ，125W F TC mon $+\cdots 00$ | 24546 | C4 1／8－T0－56R2－F |
| AR1R27 | 4957－0317 | 7 |  |  | 24546 | C4－1／8－70 133：－F |
| A2 $1 \mathrm{R28}$ | 01757－0317 | 7 |  | RESTSTOR 1，33K 1\％125W F TCm0t－100 | 24546 | C4－1／8－ $\mathrm{CO} 0-1331 \cdots$ |
| A 212 cg | 0683－4705 | 9 |  | RESISTIR $475 \%$ ，25w FC TC＝－400／＋500 | 01121 | CP470 ${ }^{\text {C }}$ |
| A21831 | 0683－3325 | 6 |  | RESISTOR $3.3 \mathrm{~K} 5 \%$ ． 25 W FC TC $=-400 /+700$ | 01121 | C－63325 |
| A 21832 | 0603－4715 | 0 |  |  | 01121 | C84715 |
| A21R33 | 06833－4705 | 8 |  | RESIGTOR 47 $5 \%$ ，25w FC rc：$-400 /+500$ | 01121 | CEA705 |
| A21R34 | 0757－14338 | 3 |  | RESISTOR $5.11 \mathrm{~K} 1 \%$ ，125W F TCom $0+\cdots 0$ | 24546 |  |
| AČ1R36 | 9757－18290 | 3 |  | RESISTOR $1 \mathrm{~K} 1 \%$ ，125w F TC $=0+-100$ | 24516 | C4－1／8－T0 1001－F |
| A21R37 | 0698－3153 | 9 | 3 | RESISTOR $3.83 \mathrm{~K} 1 \%, 1254$ F TC $=0+\cdots 100$ | 24546 | C4－1／8－－T0－ $3831 \cdots \mathrm{~F}$ |
| A2．1R38 | 06980．0003 | 8 | 6 | RESTSTOR $1.96 \mathrm{~K} 1 \%$ ，125W F TC＝0－－ 100 | 24546 | C4－1／B－T0－1561－F |
| A21R39 | 0757－0401 | 0 |  |  | 24546 | C4－1／8m－ 0 －101．F |
| A21R41 | 9683－6815 | 5 |  | RESISTOR 680 5\％，250 FC TC上，－400／4600 | 01121 | C66815 |
| AE1R42 | 06，96－3153 | 9 |  |  | 24546 | C4－1／8－T0－3831－F |
| AE1843 | 0698－3153 | 9 |  | RESISTOR $3.9 .3 \mathrm{~K} 1 \%$ ，125W F TC $=0+0100$ | 24546 |  |
| AE1R44 | 0698－0． 083 | 8 |  | RESSTSTOR 1.90 K 1\％， 125 WW F TC $=0+-100$ | 24546 | C4－1／8－70－1961－F |
| A 21846 | 0683－1015 | 7 |  | RESIETOR $1005 \%$ ，25W FC TC $=-400 / 4500$ | 01121 | CE1015 |
| A21847 | 0603－3325 | G |  | RESISTOR 3．3K 5\％．25W FC TC＝－400／1700 | 01121 | C．E3325 |
| AR1R4日 | 0693－1015 | 7 |  | RESISTOR $1005 \%, 254$ FC TC $=-400 / 4500$ | 01121 | CE1015 |
| A 218.49 | 0696－3443 | 0 | 1 | RESISTOR 237 1\％，125w F TC＝A + － 100 | 24546 | C4\％1／8－T0－2078－F |
| A 21 RS 1 | 0757－0418 | 9 |  | RESISTOR 619 $1 \%$ ． 12 EW F TC＝0＋－100 | 24546 | C4． $1 / 8 \cdots$ T0 6129 P － |
| A21R232 | 0757－0444 | 1 |  | RESISTOR 12，1K $1 \%$ ，125W F $7 \mathrm{C}=00+-100$ | 24546 | C4 1／8－70－1212－F |
| A21R53 | 17757 02380 | 3 |  | RESISTOR $1 \mathrm{~K} 1 \chi$ ． 12 SW F TC＝0＋－100 | 24546 | E4－1／9－T0－1001－F |
| A21RS 4 | 0757－0260 | 3 |  | RESISTOR $1 \mathrm{~K} 1 \%$ ，125W F TC＝0＋－100 | 24546 | CA $1 / \mathrm{B}-\mathrm{T}) \cdots 1001 \cdots \mathrm{~F}$ |
| A 21256 | 0698－0063 | घ |  | RESISTOR $1.96 \mathrm{~K} 1 \%$ ，12334 F TC $=0+\cdots 100$ | 24546 | C4．1／8－10－1961－F |

Table 6－3．Replaceable Parts

| Reference Designation | HP Part Number | $\left\|\begin{array}{l} C \\ D \end{array}\right\|$ | Qty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A2：1857 | n603－5105 | 4 | 1 | RESTSTOR S1 $5 \%$ ， $25014 \mathrm{FC} \mathrm{TC=-400/4500}$ | 01121 | CES 105 |
| A21559 | 0693－4＂715 | 0 |  | RESTSTOR 470 5\％．2EW FC TCw $400 /+600$ | 01121 | CDA715 |
| A21859 | 0683 1015 | 7 |  | RESISTOR 100 5\％． 2500 FE TC＝$=409 / 5500$ | 01121 | CE1015 |
| A21861 | 0683－1035 | 1 |  | RESTSTER 106 5\％．25w FC TC＝$-406 /+700$ | 01121 | C41835 |
| Afirbe | 20683－1015 | 7 |  | RESIGTOR $10258.25 W F C C T C=A 90 / 1500$ | 01121 | Ceriars |
| A21863 | 075\％－ 04419 | 0 |  |  | 245.46 24546 | $\begin{aligned} & \mathrm{CA-1/8-TG-681RF} \\ & \mathrm{CA}-1 / \mathrm{F}-\mathrm{T}-2151 \cdots F \end{aligned}$ |
| AC1R64 | 0678－00184 | 9 |  |  | 24， 24.486 | $4-1 / 8-10-161 F$ |
|  | $0757-0401$ $0.683-4705$ | 8 |  |  | 31121 | Cw470s |
| AE1R67 | 0698－1083 | － |  | RESISTOR $1.96 \mathrm{~K} 1 \%$ ， 125 SW F TC $=0+\cdots 100$ | 24546 | CA ${ }^{\text {－1／日－T0－1961－F }}$ |
| A21R69 | 067a－3156 | 2 |  |  | 24546 | C4－1／6－T16－1472－F |
| A 21869 | 0659－3156 | 2 |  | RESISTOR $14.7 \mathrm{~K} 1 \%$ ，1254 F TC $=01+\cdots 100$ | 24545 | CAM1／8－10 1472－F |
| A31870 | 0757－0401 | 0 |  | RESTSTIDR $1031 \%$ ，12SW F $\mathrm{TC}=0+\cdots 109$ | 24546 | CA－1／8－T0－102 F |
| A231871 | 0690－4297 | 6 | 1 |  | 24546 | C4 1／8－76－4422－F |
| A21872 | 0683－1025 | － |  |  | 31121 | C81025 |
| A 21873 | 0683－4705 | 8 |  | RESISTOR $475 \%$ ，2FW FC TCO $-400 /+500$ | 181218 | carmos |
| A21R74 | 2100－3511 | 7 | 1 | RESISTOR－TRM 1 LK 10\％C TOP－ADJ $1-T R N$ | 284830 | 2100－3211－1802－ |
| A2．1R75 | 0757－8442 | 9 |  |  | 24546 38997 |  |
| A 21876 A 21877 | $2100-3196$ $0683-1065$ | 6 | ${ }_{1}^{1}$ |  | 32997 01121 | $\begin{aligned} & 329261.503 \\ & c \in 1065 \end{aligned}$ |
| A 218187 | 0．903－1．165 |  |  |  |  |  |
| A21870 | 10757－0403 | 3 | 1 | RESISTDR $939 \mathrm{~K} 1 \%$ ． 125 SW F TC $=0+100$ | 28480 24546 | 0757－14888 |
| A21R79 A2 P61 | $0757-0401$ $0663-1035$ | 0 |  |  | 24546 | $\begin{aligned} & \mathrm{CA} 1 / 8-\mathrm{T} 2 \cdots 161 \cdots F \\ & \mathrm{CW1035} \end{aligned}$ |
|  | $0663-1035$ $0683-5625$ | 3 | 1 |  | 01121 | cestes |
| A21Ra3 | 0683－2025 | 1 |  | RESIGTOR EK $5 \%$ ，25，FE TC＝－400／4700 | 31121 | cenars |
| AC1R84 | 0757－0299 | 2 |  | RESISTOR 13．3K 1\％． 125 EW F TC $=0+-100$ | 19701 | MFF 4C1／8－T0－1332－F |
| A 218 EG | 0757－0439 | 4 |  |  | 24546 | C4 1／8－To $6811 . \mathrm{F}$ |
| A．1R87 | 0683－4705 | 8 |  |  | ${ }^{01121}$ | C84705 |
| A2，1REB | 2103－3363 | 4 | 1 |  | 01831 | ${ }^{2} 804705$ |
| A $21 \mathrm{R89}$ | 0683－4705 | 8 |  | RESTSTOR $475 \%$ ，25W Ft．TCm $-400 /+500$ |  |  |
| A21R91 | 0680－0083 | 9 |  |  | 24546 | C6．1／3－70－1961－F |
| AE1892 | 0683－1025 | 9 |  | RESISTOR 1K 5\％． 25 EW FC TC\％－400／460 | 01121 | CE102S |
| A21893 | 06837－1015 | 7 |  |  | 01121 01121 | Cersiots |
| A21R94 A21R96 | $0683-1015$ $0757-0.421$ | 7 |  |  | 24546 |  |
| A21R97 | 0683－3225 | 3 |  | RESTSTOR $2.2 \mathrm{~K} 5 \% .254 \mathrm{FC}$ TC $=-400 / 4700$ | 01121 | Csezas |
| Aट1898 | 0683－2225 | 3 |  |  | 01121 | crezas |
| A21R99 | $0698-3154$ | 0 |  | RESISTOR $4,23 \mathrm{SK}$ 1\％123W F TC＝0＋－100 | 24546 | CA－1／B－T0－42，${ }^{\text {Cra }}$ |
|  | 0683－1025 $0683-2225$ | $\frac{9}{3}$ |  | RESISTOR RESISTOR 2.20 | 01121 | Cx\％2es |
| A 2110104 | 06633－2235 | 5 |  | RESISTOR 22k $5 \%$ ，25w FC T0：－400\％＋800 | 01121 | Ceat3 |
| A21R106 | 0603－1035 | 1 |  | RESISTOR $10 \mathrm{~K} 5 \%$ ，2EW FCE TC＝$=400 / r 730$ | 31121 | C81035 |
| A 212107 | 2100－0567 | 0 | 1 | RESISTOR－TRMR $2 \mathrm{~K} 10 \% \mathrm{C}$ TOF－．ADJ 1 －TEN | 23480 | 21090567 |
| A21R109 | 0698－6083 | B |  |  | 24546 | CA－1／B－T0－1961－F |
| A2，17109 | 0683－1015 | 7 |  | RESTSTOR 10085 ，254 FC TC $-400 /+500$ | 01121 | CD1015 |
| A 218111 | 0683－1015 | 7 |  |  | 01121 | CR1015 ${ }_{\text {CA－1／6－70－－825R－F }}$ |
| AE1R112 | 0757－0421 | 4 |  |  | 24546 24546 | $64 \cdots 1 / 8 \cdots 0-511 R \cdots F$ |
| AS1R113 $A R 1 R 114$ | － $\begin{aligned} & \text { 0757－0416 } \\ & 0757-0416\end{aligned}$ | 7 |  |  | 24546 24546 | C4－18－T0－51R－FF |
| A2．18116 | 0683－4705 | 8 |  | RESISTOR $475 \% .2514$ FC TCan－400／4．500 | 01121 | CE4705 |
| A21R117 | 17757－6439 | 4 |  | RESISTOR 6． $31 \mathrm{~K} 1 \%, 1254 \mathrm{~F}$ TC $=0+-100$ | 24546 | C4－1／8－70－6811－F |
| A $21 \mathrm{R118}$ | 0683－1025 | 9 |  |  | 01121 | C81025 |
| AE1R119 | 0683－1835 | 9 |  | RESTSTOR 19k 5\％． 25 W FC TC＝－400／＋800 | 01121 | CE183s |
| A2IR121 | 1683－1025 | 7 |  | RESISTIOR 1K 5\％， $25.5 \mathrm{FC} T \mathrm{C}=-400 / 4600$ | 01121 | CE1025 |
| AR1R122 | $0698 \cdots 3162$ $0757-0465$ |  | 1 |  | $\begin{aligned} & 24546 \\ & 245.46 \end{aligned}$ | $\begin{aligned} & \mathrm{C} 4 \cdots 1 / 0 \cdots \mathrm{Tg}-4642 \mathrm{~F} \\ & \mathrm{C} 4 \cdots 1 / \mathrm{T}-\mathrm{TO}-1003 \cdots \end{aligned}$ |
| A21R123 | 0757－0465 | 6 4 4 |  | RESISTOR RESTSTOR 100K RES R | 245.46 0.121 | CH1525 |
| A21R12b | 0683－1025 | 9 |  | RESTSTOR $1 \mathrm{~K} 5 \%$ ，25，F FC TCime－40／4600 | 01121 | CR1025 |
| A 218130 | 0683－2225 | 3 |  | RESISTOR 2，2K 5\％． 25514 FC T0 $=-400 / 4700$ | 01121 | caerz |
| A A 181382 | $0757-03988$ $0690 \cdots 343$ |  |  | RESTSTOR $751 \%$ ． 125 F F $\mathrm{TC}=0 \mathrm{D}+\cdots 100$ RESISTOR $26.11 \%$ ，125iN F $\mathrm{TC}=0.8+100$ | $24546$ |  |
| A21R133 A21R134 | $0698 \cdots 3432$ $0683-1035$ | 7 |  |  | 038888 01121 | CB1035 |
| AC18135 | 6683－2205 | 9 |  | RESSSTOR 22 5\％．2SW FC，TC＝－－400／＋500 | 01121 | capeos |
| A218136 | 06633－1025 | 7 |  | RESISTOR 1K 5\％．25W FC TC＝ $\mathbf{4 0 0 / 4 6 0 0}$ | 01121 | CE1025 |
| A21R137 | 8083－1035 | 2 |  | RESISTOR 10K 5\％．2EW FC TC $=-400 /+700$ RESTOTOR A 53K 14 125W F TCerb＋－130 |  |  |
| $\mathrm{A}^{2} 12138$ | 8698－4443 | 1 | 1 |  | 824546 | CA 1／8－T0－45：31－F <br> CD1日號 |
| AE2R142 | 06，93－1025 | 9 |  | RESISTOR $1 \mathrm{~K} 5 \%$ ． $25 \mathrm{5W}$ FC TC $=-400 /+600$ | 01121 | C81025 |
| A218143 | 0683－1015 | 7 |  | RESISTGR $1005 \%$ ， 25 W FE TOm $-400 /+500$ | 01121 | C81at5 |
| AE：1R144 | 0683－3329 | 6 |  | RESISTOR 3．3K $5 \%$ ，256 FC TC $=-400 /+700$ | 01121 | cr3325 |
| A 18148 | 0683－1025 | 9 |  |  | 01121 | CE1025 |
| Aद3 1R：46 <br> A21R147 | $\begin{aligned} & 0603-1035 \\ & 0683-1035 \end{aligned}$ | 1 |  |  | 01121 01121 | $\begin{aligned} & \mathrm{CH} 1035 \\ & \mathrm{CB} 2035 \end{aligned}$ |

See introduction to this section for ordering information
＊Indicates factory selected value

Table 6－3．Replaceable Parts

| Reference Designation | HP Part Number | $\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$ | Qty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A21R140 | 0683－7515 | 4 | 1 |  | 01121 | C87515 |
| AE1R149 | 0683－1035 | 1 |  | REGISTOR $10 \mathrm{~K} 5 \%$ ，25W FC TC $-400 /+760$ | 01121 | CE1035 |
| AERR150 | 0683－3325 | 6 |  | RESISTOR $3.3 \mathrm{~K} 5 \%$ ，2SIN FC TC＝－400／＋700 | 01121 | CR3325 |
| AE1R151 | 0683－1035 | 1 |  | RESISTOR $10 \mathrm{~K} 5 \%$ ， 35 W FC TC $=0-400 /+700$ | 01121 | Criobs |
| A21R15\％ | 0683－1035 | 1 |  | RESISTOR $10 \mathrm{~K} 5 \%$ ， $\mathbf{C S W}$ FC $7 \mathrm{C}=3800 /+700$ | 01121 | Cb1035 |
| A $21 \mathrm{R161}$ | 068：3－2415 | 3 | 1 | RESIGTOR 240 5\％，25il FC TC＝－400／4600 | 02121 | cratis |
| A21R16．2 | 0693－4705 | 8 |  |  | 01121 | C64735 |
|  | 0603－1045 | 3 |  | RESTSTOR $100 \mathrm{~K} 5 \%$ ，25U FC $T C=-400 /+800$ | 01121 | C81045 |
| AR1R164 | 0683－4735 | 4 |  | RESISTCIR 47K $5 \%$ ，25W FC $7 \mathrm{C}=-400 /+800$ | 01121 | C84735 |
| A $2: 16165$ | 8683－1045 | 3 |  | RESISTOR $100 \mathrm{~K} 5 \%$ ． 25.54 FC TC $=-400 /+800$ | 01121 | CE11145 |
| nel816t | 0683－4735 | 4 |  | RESISTLOR $47 \mathrm{~K} 5 \%$ ，25w FC TC＝－400／4800 | 01121 | CE4735 |
| A21R167 | 0693－4725 | 2 |  | RESTSTOR $4.7 \mathrm{~K} 5 \%$ ，25W FE TC $=-406 /+700$ | 01121 | Cli47es |
| A 218168 | 06833－1035 | 1 |  | RESISTOR 10K $5 \%$ ，25L FCC TCE $-400 /+700$ | 01121 | C81835 |
| AR 1R169 | 0698－3518 | ${ }_{5}^{0}$ | 1 | RESISTOR $7.32 \mathrm{~K} 1 \%$ ， 12 ESW F TC＝0 $0+100$ | 24546 |  |
| AE1R170 | 0683－2423 | 3 | 1 |  | 01121 | Catch ${ }^{\text {c }}$ |
| AR1R17 | 0757－1094 | 9 | 1 |  | 24546 | CA．1／日－T0－1471－F |
| Aardre | 0683－11025 | 7 |  | RESTETGR IK S\％， 2 CS ，FC TC $=-400 / 4600$ | 01121 | C 31025 |
| Acir173 | 0683－1845 | 3 |  | RCSISTOR $100 \mathrm{~K} 5 \%$ ， 25 FW FC TC $=-400 /+200$ | 01121 | CE1045 |
| ARIR174 | 06633－5125 | 9 |  |  | 01121 | C85125 |
| A 18176 | 0683－4705 | 8 |  | RESISTOR $475 \%$ ． 25 W FC TCE $=400 /+560$ | 01121 | Co4705 |
| AmiR1\％y | 6757－0417 | $B$ | 1 | RESTSTUR $5621 \%$ ． 12505 F TC $=0+\cdots 100$ | 24546 | C4－1／8－T0－562n－F |
| A21R179 | 0ワ57－0401 | 0 |  | RESISTOR $1001 \%$ ． 12 ESW F TCE0＋－100 | 245946 | $\mathrm{C4} 1 / 8 \cdots \mathrm{TO} 101 \cdots \mathrm{~F}$ |
| AEIR179 | 06，333 3915 | 0 | 3 |  | 01121 | Cs3915 |
| AStR181 | 06933－3915 | 4 |  | RESISTOR 390 5\％． 25.5 FC TC＝$-400 /+600$ | 01121 | CB3915 |
| A21R192 | 0603－1525 | 4 |  | RESISTER 1． $5 \mathrm{SK} 5 \%$ ． 25 SW FC TE $=-400 /+700$ | 01121 | C815as |
| A 21.183 | 0683－1025 | 9 |  | RESISTOR $1 \mathrm{~K} 5 \%$ ．254 FC TC：－ $400 / 4600$ | 01121 | CEl025 |
| AC1R164 | 0757－0280 | 3 |  |  | 24546 | C4－1／8－70－1001－F |
| A 218186 | 0\％57－8416 | 7 |  | RESISTOR $51: 1 \%, 12: 5 \mathrm{~W}$ F $\mathrm{TC}=0+-100$ | 245，46 | CA 1／日－T0 511R－F |
| A21r167 | 0696－4123 | 5 |  | RESISTOR $4971 \%$ ，12S F F TCmol－100 | 24546 | C4 1／8－T0－499R－F |
| Aztrage | 0757－0200 | 3 |  | RESISTOR $1 \mathrm{~K} 1 \% .125 \mathrm{~N}$ F $\mathrm{TC}=0+100$ | 2.4546 |  |
| A218139 | 0757－0431 | 0 |  | RESISTOR $1001 \%$ ，125w F $1 \mathrm{C}=0+\cdots 100$ | 24546 | C4－1／0－Tt－10． F |
| ARIR191 | 0757－6290 | 3 |  | RESISTOR $1 \mathrm{~K} 1 \% .125 W$ F TC＝0 6.100 | 24546 | C4 1／8－T0 1001\％ F |
| ALIR192 | 075．7－0．042 | 9 |  | RESISTOR $10 \mathrm{~K} 1 \% \cdot 1250 \mathrm{NF}$ TC＝00－100 | 24546 | C4－1／B－T0－1002－F |
| A21R193 | 0698－3279 | 0 |  | RESISTOR 4．99K $1 \%$ ，125W F TC 0 0－100 | 24546 | C4．1／0－70－4991－F |
| A21R194 | 0757－0401 | 0 |  | RESISTOR 100 $1 \%$ ，125以 F TC $=0+\cdots 100$ | 24546 |  |
| A212196 | 075\％－0459 | 1 | 1 | RESISTOR $27.4 k 1 \%$ ． 125 W F TC＝0 $0+100$ | 24546 | C．4－1／3－10－2742－F |
| ACPR197 | 0698－3440 | 7 |  |  | 245－46， | C4－1／8－T0－196RF |
| A 218199 | 106，98－4474 | 9 | 1 |  | 24.576 | C4－1／8－T0 6451－F |
| Antretgy | ［753\％－0439 | 4 |  | RESTSTOR 6．B1K $1 \%$ ． 12.5 SW F TC＝00＋100 | 24.546 | C．4 1／8－ C （0－6011－F |
| A 218200 | 0＇557－0394 | 0 | 1 |  | 24546 | C．4－1／E－T0－5181－F |
| AEIR201 | 075゙\％－0280 | 3 |  | RESIETOR $1 \mathrm{~K} 1 \%, 1251 / 2 F T C=0+\cdots 100$ | 241546 | CA 1／8－T0－1001－F |
| A $21820{ }^{\text {a }}$ | 0757－0401 | 0 |  | RESISTOR $1001 \%$ ，1254 F TC＝0＋ 100 | 24546 | C4－1／8－T0－101－F |
| A 312 CO | 0698．3257 | － |  | RESISTOR 4 ， $99 \mathrm{~K} 1 \%$ ． 12 EW | 24546 | C4－1／8－Ti） 4991 － F |
| AE1R204 | 0757－0442 | 9 |  |  | 24546 | CA－1／0－T0 1002－F |
| niv12005 | 07557－0283 | 6 |  |  | 24.546 | C4 $\cdots$ 1／8－T0 $200 \%$ F |
| APtr206， | 0757－0290 | 3 |  | RESISTDR $1 \mathrm{~K} 1 \%$ ，12SL F F TC＝0＋-100 | 2．5\％．46 | EA－1／8－70－1001－F＇ |
| A 212 P 217 | 0693－3315 | 4 | 1 |  | 01121 | cro3is |
| AT1R200 | 06033－4325 | 9 | 1 | RESISTOR 4．3k $5 \%$ ，25W FC，TC＝$-400 / 1700$ | 01121 | CEAzes |
| A21R209 | 3603－3915 | － |  |  | 01121 | CB3915 |
| A ${ }^{2} 1 \mathrm{~T} 210$ | 0693－4705 | 8 |  | RESISTOR $475 \%$ ．25w FC TC＝$-480 / 4500$ | 0tt21 | C：4705 |
| A 21 R 212 | 0757－0439 | 4 |  |  | 24546 | C．4－1／8－T0－63 1－FF |
| A21R213 | 0757－0401 | ${ }_{9}$ |  | RESISTOR $1001 \%$ ，12S4 F TC $=0+100$ | 245A8 | CA 1／E－T0－10．1－F＇ |
| A21R214 | 0757．0442 | 9 |  |  | 2.4546 | CA 1／0－T0－1092－F |
| AC1R215 | 0683－2205 | 9 |  | RESISTOR 22 5\％，25W FC TC＝ $400 / 4500$ | 01127 | Cheens |
| A 2 1R216 | 0757－1279 | 3 |  |  | 24546 | C4－1／6－10－316t |
| A21131 | 1620－0817 | 8 | 1 | IE FF ECL D－M／S DUAL | 04713 | MC10131P |
| A2tue | 1821－03011 | 4 |  | TRANSISTOR ARRAY 14－PIN PLSTE DIP | 31.585 | CA3946 |
| $A_{2} 2104$ | 1920－1196 | 8 |  | IE FF TTL 153 D－TYPE POS－EDGE－TRLE COM | 01295 | SN74L．S174N |
| ARTus | 1820－1112 | 9 |  | IC FF TTL LS D－TYPE POS EDGE MRIC | 01275 | SN74LS74AN |
| A哏146 | 1826－0021 | 9 | 1 | IL OP AMP GP T0－99 PKG | 27114 | I．．． M 310 H |
| ARTU7 | 1820－0629 | 0 |  |  | 01295 | SN745112N |
| A2148 | 1620－0697 | 2 | 1 | IC DRUR TTL 9 NAND LINE DUAL 4－TNP | 01295 | gmbasiann |
| Astug | 1920－1279 | 9 |  | IC CNTR TTL LS DECD UP／DCLWN SYNCHRO | 31275 | SN74．5190n |
| A21010 | 19326－0043 | 4 |  | IC OP AMP GP TO 99 PKG | 31.535 | CA307t |
| A21411 | 1820－127\％ | 8 |  |  | 31285 | SiN74LS170N |
| A 21.112 | 1820－0691 | 4 | 3 | IC GATE：TTL S NAND QUAD a in in | 01295 | Gn74goan |
| A2．1U13 | 1820－06827 | 0 |  |  | 01295 | SNFA5112N |
| A21us 4 | 1820－1196 | 8 |  | IC FF TTL LS D－TYPE POS－EDCE－TRIG COM | 01295 | SN＇4L．5174N |
| A21U15 | 1820．1196 | 8 |  | TE ST TLE LE D－TYPE POS EDGE TRIG CCM | 01275 | SN74LS5174N |
| A 1017 | 1620－1322 | 3 |  | IC GATF TTL 6 NOR GUAD 2 INP | 01298 | 5n74802m |
| ARsule | 1920－7629 | 0 |  |  | 01295 | 5M74S112N |
| A 21019 | 1920－3004 | 9 | 1 | IC misce nmos | 28490 | 1026.2014 |
| A 1 Lit | 1 BEO － 7693 | 6 |  | IC TWU TTL 5 HEX 1 TNP | 31295 | EN＂74904N |
| A） 1022 | 1920－0691 | 4 |  | IC GATE TTL S nand quad a Ind | 01295 | SN $\operatorname{sighon}$ |
| А＊ 1123 | 1820 －1681 | 4 |  | IC．GATE TTL 5 NAND GLAD E．INP | 11295 | 5307450314 |

Table 6-3. Replaceable Parts

| Reference Designation | HP Part Number | $\begin{aligned} & C \\ & D \end{aligned}$ | Qty | Description | Mfr Code | Mifr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A21u24 | 1320-0629 | 0 |  | IE FF TTL S J-K NEG-EDGE-TRIG | 01295 | SNTAS112N |
| A 21425 | 1920-06993 | 8 |  | IC FF TTL S ${ }_{\text {IC }}$ S-TYPE POS-EDGE-TRIG | 01295 01295 | SN74874N |
| A21u26 A2tu27 | $1820-0693$ $1820-0629$ | - |  | IC FF TTL 5 S-K NEC-EDEE-TRIG | 01295 | SN743112N |
|  | 1820-16,41 | ${ }^{1}$ |  | IC DRUR TTL LE EUS DRUR LiEX 1-INP | 01295 | 3N74LS365AN |
| A2lues | 1020-0629 | 0 |  | IC FF TTL S J-K NEG-EDSE TRTG | 01295 | 5N745112N |
| A21430 | 1320-06229 | 0 |  | IC FF TTL 3 J-K NEG-EDGE.-TRIG | 01295 | EN748112N |
| A 21431 | 1820-1144 | 6 |  | IC GATE TTL, LS NOR QUAD 2 InP | 81295 | ¢N74i.S02N SN7 45112 N |
| A2xuse | 1820-0629 | 0 |  | IC FFF TTL S 3 -K NEG -EDGE-TRIG | 01295 36535 | SN7 4512 N CA1458 |
| A 21433 | 1826-1111 | 7 |  | IC OP AMP Gf muel tow 99 PKE | 3L.535 |  |
| A2.1U34 | 1820-0802 | 1 |  | If cate ecl nor quad e-inp | 04713 | MC10102P |
|  | $0360-1716$ $1460-1336$ | 1 4 |  | TERMINAL-STUD SEL--PIN PRESS-MTG WIREGORM Cu brimin | 28480 28480 | $07600-1716$ $1460 \sim 1336$ |
|  | 7121-1234 | 9 |  | LABEL CAUTION 1.925 IN -WD 2.24-IN-LG | 28480 | 7121-1234 |
| A23 | 03325-66523 | 4 | 2 | ATTENUATOR ASEEMELIY | 28480 | 033255-66523 |
| $\mathrm{A}_{23 \mathrm{Cl}}^{8}$ | $3160-4571$ | B |  |  | 23480 28480 | $\begin{aligned} & 0160-4571 \\ & 016004571 \end{aligned}$ |
|  | 016004571 $0 \times 60-3558$ | 8 |  |  | 28480 28.480 | $0160-4671$ 0160.3558 |
| A $233 C 3$ A $2 \mathrm{Cl} ~$ | 0160-3558 | 9 |  | CAPACITOR-FXD $\quad$ MUF +--20\% SOUDC CER | 288460 | 01660-3559 |
| A 3 3c8 | 0160-3558 | 9 |  | CAPACITOR-FXD, 1UF +--20\% 50vdC CER | 20480 | 0160 3 3558 |
| A23C9 | 0160-3559 | 9 |  | CAPACITOR-FXD, 1LF +-20\% SOUDC CER | 28480 | 0160-35588 |
| АСЗ3cto | 0160-3559 | 9 |  | CAPACITOR-FXD, 105F +-20\% 50VDC CER | 28480 | 0168-3558 |
| A23C.11 | 0160-35550 | 9 |  | CAPACITCRR-FXD, 1UF +-2日\% 5JUDC CER | 28480 28480 | $0160-3558$ $0168-3558$ |
| Аез3C12 | 0160 - 3558 | 9 |  | CAPACITOR-FXD, $10 F+20 \% ~ 5 Q U D C ~ C E R ~$ CAPACYTOR FXD | 28480 23480 | 3160-3558 |
| Aอsciz | 816.9-3556 | 9 |  | CAPACMTER FXX . 110 F +-20\% SOVDC CER | 23480 | 1160-3558 |
| A23C14 | 0160-3558 | 9 |  | CAPACITOR -FXD , TUF +-20\% 50VDC CER | 28488 23430 | $\begin{aligned} & 0160-3558 \\ & 0160-4571 \end{aligned}$ |
| A23ctis | 0160-4571 | 8 |  | CAPACITOR FXD , 1UF 1 B0-20\% SOUDC CER | 23430 29430 | 0160-4571 |
| Aezicis | 1160-4571 | 8 |  | CAPACITOR-FXD, CAPACITOR-FXD | 28400 | 0160-4571 |
| A23C17 | 016:1-4571 | ${ }_{8}$ |  |  |  |  |
| A23J30 | 1251-5064 | 0 |  | CONEECTOR 14-PIN M POST TYPE | 29480 | 1251-5064 |
| A23, 1 | $1251-2969$ | 9 |  | CONNECTER PHONO SINGLE PHONG JACK; DIP | 28460 | 1251-2969 |
| A 2335 | 1251-3969 | 8 |  | CONNECTOR-PHONO SXNGI-E PHONO JACK; DIP | 28.490 | 1251-2969 |
| A23J3 | 1251.2969 | $B$ |  | CONNECTOR PHICNO SINGLE PHONO JACK; DIP | 28480 29480 | 1251-2969 |
| AE354 | 1255-2969 | 8 |  | CONNECTOR-PHONO SINGLE PHONO JACK; dip | 28480 | 1251-2969 |
| Аез² | 0490-1141 | 1 | 4 | RELAY 4C 12UC-COTL LİUDC | 28480 | 0498-1141 |
| AE.3k2 | 0490-1141 | 1 |  | RELAY AC TEUC-COIL 12 VDC | 288880 | $04900 \cdots 141$ $0490-1141$ |
| Аазк3 | 0490-1141 | 1 |  | RELAY 4 C 12VC-COIL 12 VDC | 28480 28480 | O490-1141 $0490-1141$ |
| AE3K4 | 0490-1141 | 1 |  | Relay ac revc-coti revdc | 28490 | 0490-1141 |
| A23R1 | 0699-0365 | 9 | 2 |  | 28480 29480 | $0699-0065$ |
| $A R 3 R 2$ $A Z Z R 3$ | -0699-0065 | 8 |  |  | 23480 28480 | 06997-0065 |
| ${ }_{\text {A }}^{\text {A } 2383}$ | $0399-0273$ $0699-0274$ | 0 1 | 1 |  | 28480 23480 | 069\% 0274 |
| A A SRS | 0698-8258 | s | 1 |  | 19701 | MF5 52C1/4-T9-247R5-B |
|  | $0698-7984$ $0690-7984$ | 2 | 2 |  | 28480 88480 | $\begin{aligned} & 0699-7984 \\ & 0698-7964 \end{aligned}$ |
| ${ }_{\text {A } 2 \times 3 \mathrm{Sab}}$ | 6699-7984 | $\stackrel{9}{9}$ | 1 | RESIETOR 66.7.25\% .25W F TC=04-50 | 28480 | 9699-0666 |
| A23R9 | 1690-7443 | 3 | 2 |  | 19701 | MFSECL/4-T9 100R-E |
| A 23 R 10 | 0690-7448 | 3 |  | RESISTOR $100.1 \%$. 25 FW F $\mathrm{C}=0+2 \mathrm{e}$ | 19701 | MFS2C1/4-T\% - $100 \mathrm{R}-\mathrm{B}$ |
|  | 7121-1234 | 9 |  | LABEL CAUTION 1.925 IN-WD 2.24-IN-LG | 28480 | 7121-1234 |

[^12]Table 6-3. Replaceable Parts

| Reference Designation | HP Part Number | $\begin{aligned} & C \\ & D \end{aligned}$ | Qty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | CHASSTS AND MICCELIANEGUS PARTS |  |  |
|  | 03325-20641 | 3 | 4 | SHID Top | 28400 | 113325-90601 |
|  | 03325-20602 | 4 | A | SHLID MOTTOM | 28430 | 33325-20632 |
|  | 03325-04104 | 7 | 1 | COVER NO? | 28480 | 03325-04104 |
| B1 | 3160-0209 | 4 | 1 | FAN-TBAX 45 -CFM $115 \mathrm{~V} 50 / 60-\mathrm{Hz}$ 1.5-THK (WITHOUT CABLE) | 28480 | 3160.0209 |
|  | 03325-61612 | 4 |  | FAN (WITH CABLE) | 28480 | 03325-61612 |
| 03 | 03325-66502 | 9 |  | Plots SPİY | 28490 | 03323-66532 |
| ${ }^{\text {A3 }}$ | 03325.96503 | 0 |  | PC ASEY-SIG-SCE | 29400 | 03325-66503 |
| ${ }^{\text {A }}$ | 03585866505 | c |  | PC ASSY-KEYED | 28480 | $033250-66535$ |
| A 6 | 03375066506 | 3 |  | PC ASSY-CONTROL | 28480 | 03325-66306 |
| A14 A8 | 233323-66514 | 3 |  | PE ASSY-FUNCTITON | 28480 | 03325.66514 |
| A 21 | ${ }^{03325-66508}$ | 2 |  | PC ASSY-HI VOLT (OPT. 002) | 28480 29490 | 03325-66508 $03325-66531$ |
| A23 | 03325-665\%3 | 4 |  | PC ASSY-ATTEN | 28480 | 03325 5-66523 |
| A9 | 03325-66509 |  |  | PC-ASSY OVEN (OPT. 001) | 28480 | 03325-66509 |
| Cz | $0.150-10012$ | 3 |  | CAPACITOR-FXD - O1UF + - 2a\% 1KUDC CER | 56289 | C023A102J103ME36 |
| ${ }_{C}^{C 3}$ | 0150-0012 | 3 |  | CAPACITOR F F , 01UF + $20 \% 1 \mathrm{KVDC}$ CER | 56239 | COEZ3A102J103M3313 |
| ${ }^{C 4}$ | 0150-0012 | 3 |  | CAPACITOR - FXD -01UF +-2日\% 1KVDC CER | 56289 | coz3a102J103ms36 |
|  | 0150-0012 | 3 |  | CAPACITOR FXD . $016 F+-20 \%$ IKUDC CER | 86259 | C023At02,5103ME3B |
| F1 | 2110-0001 | 8 | 1 | FUSE 1 A $250 \cup$ NTD $1.25 \times .25$ UL | 75915 | 312001 |
| F1* | 2110-0012 | 1 | 1 | FUEE . SA 250U NTD 1, 2SX. 25 UL. | 28480 | 2110-0012 |
| J1 | 1250-1558 | 7 | 12 | ADAFTER-COAX STR F-. BNC F-MCA-PHONG | 28430 | 1250-1558 |
| 32 | 1250-1558 | 7 |  | ADAP TER-COAX STR F-BNC F-RCA PHONO | 28480 | 1250-1558 |
| J4 | 1250-1558 | 7 |  | ADAPTER-COAX STR F-TANC F-RCA-PHONG | 28480 | 1230 1558 |
| 35 | 1250-1558 | 7 |  | ADAPTER-COAX STR F-ENC F-r.eA PHONG | 28480 | 1250-1558 |
| J6 | 1250-1558 | 7 |  | ADAP TER-COAX STR F-ENE F-RCA-PHONO | 28480 | 1250-1558 |
| J7 | 1250-1558 | 7 |  | ADAPTER-COAX STR F PBNC F-RCA-PHONQ | 23480 | 1250-1558 |
| J® | 1258-1558 | 7 |  | ADAP TER-COAX GTR F-bNC F-RCA-PHONO | 28460 | 1250-1558 |
| J9 | 1250-1558 | 7 |  | ADAPTER-COAX GTR F-GNC F-RCA-PHONO | 29480 | 1250-1558 |
| J10 | 1250-1558 | 7 |  | ADAPTER-COAX ETR F-BNC F-PRCA PHONO | 29480 | 12581558 |
| T11 | 1250…1556 | 7 |  | ADAPTER-COAX STR F-BNC F-RCA PHONO | 28480 | 1250-1558 |
| 518 | 1250-1558 | 7 |  | ADAPTER-COAX STR F-BNC F-RCA-PHONG | 29480 | 1250-1553 |
| 513 | 1250-1558 | 7 |  | ADAPTER-COAX STR F-BNC F-RCA PHONO | 28480 | 1250-1568 |
| MP 1 | 03325-04301 | 6 | 1 | PNL---DRESS | 28490 | 0.3325-64301 |
| MP2 | 5040-6928 | 4 | 1 | DIUTDER STRIP | 28460 | 5040-69928 |
| Mp\% | 03325-29301 | 8 | 1 | WINDOW | 28480 | 03325-29301 |
| MP4 | 03325-00201 | 7 | 1 | SUB PNL-FRT | 28480 | 03325-00201 |
| MP'S | 5020-8803 | $s$ | 1 | FRONT FRAME | 28480 | 5020-8903 |
| MP6 | 5043-7202 | 9 | 1 | TRIM TOP | 2346319 | 5040-7202 |
| Ma7 | 5020-8937 | 6 | 4 | CORNER STRUT | 28480 | 5020-8937 |
| MPG | $5060-9880$ | 5 | 2 | SIDE COVER | 28480 | 5060-9080 |
| M19 9 | 5040-7219 | 8 | 2 | STRAP HDL CAP-FIR | 28480 | $5040-7219$ |
| MP 10 | $5060-9804$ | 3 | 2 | STRAP HDL 181N | 2EABA | 5060-7904 |
| 4 MP 11 | $5040-7220$ | 1 | 2 | GTRAP HDL CAP-R | 29480 | 5540-7220 |
| MP12 | 5060 ‥9635 | 0 | 1 | TDP COUER | 28480 | 5060-9935 |
| MP13 | 03325-00202 | 8 | 1 | p CLL --REAR | 28490 | 03325-00202 |
| MP 14 | 5020-8804 | 7 | 1 | REAR CAGTING | $2 \mathrm{C4B0}$ | 5020-19304 |
| MP 15 | 03325-06602? | 4 | 1 | FRAME-MAIN | 28490 | 03325-16602 |
| MP 17 | 5091-0437 | - | 1 | SIDE TRIM | $2 \mathrm{B4} 00$ | 5001-0437 |
| $\mathrm{MP}^{48} 18$ | 5060-9947 | 4 | 1 | bottok cover | 28460 | 5060-9847 |
| MP19 | 5040-7201 | $\theta$ | 1 | F007 | 28480 | 5040-7201 |
| 4 mPO | 1460-1345 | 5 | 2 | TILT STAND SST | 29480 | 4460-1345 |
| MP21 | 13325--21101 | - | 1 | HEAT SINK | 28480 | 03325-21101 |
| MP2\% | 3150-0220 | 6 | 1 | FILTER SCREEN STEEL 3,44-WD 3.44-LG | 28490 | 3150-0220 |
| MP933 | 3150-0237 | 5 | 1 | INSULATION POLYE , 2S - Titk | 28480 | 3150-0227 |
| MP? ${ }^{4}$ | 3168-1201 | 6 | 1 | FAN GRTLLE | 294830 | 3160-0201 |
| MP25 | 1400-1229 | ¢ | 5 | CLAMP CAELE , 375-DIA 1-WD NYL | 28480 | 1430-1229 |
| MPag $M P 27$ | $5040 \cdot 6899$ | 7 | 3 | LTTE PIPE | 28480 | 5040-6,699 |
| MP27 | 00310-48801 | 0 | 20 | WASHER, SHOULDERED | 28480 | 00310-48801 |
| мр29 | 3050-0604 | 0 |  | WASHER - FL MTLC 7/16 IN SE- IN-TD | 28480 | 3050-0604 |
| MP39 | 0360-1089 | 1 | 4 | TERMINAL-SLDD LUG PL-MTG FDR - \#1/2--SCR | 28430 | 0.36.0-1098 |
| MP32 | 0519-0153 | 7 | 12 | THREADED INSERTWNUT 6-32,05B-IN-LG SST | 29480 | 0510-0153 |
| MP33 $M P 3$ |  | 3 |  | INSULATOR-XSTR THRM-CNDCT | 28480 20460 | $0340-01564$ $03325-00601$ |
| MP3.4 | 0:3325-00601 | 1 | 1 | SHEELD -RF | 29460 | 03325-00601 |
| R1 | 0683-1015 | 7 |  | RESTSTOR $1005 \%$. 25 W FC TC $=-400 /+500$ | 01121 | catels |
| T1 | 9100-4099 | 8 | 1 | TRANGFORMER -PGWER 100/120/220/240 VAC | 28480 | 9100.4099 |
| ${ }_{4} 1$ | $0,3325 .-61602$ | 0 | 1 | CEG ASSY -SIGNAL | 28490 | 03325.61602 |
| W2 | $03325-61617$ | 7 |  | CEL ASSY-GYNC | 28490 | 03325-661617 |
| W. 3 | P/0 03325-61601 | 6 | 8 | CABLE ASSY - 20.60 REAR | 28480 | P/0 03325-61601 |
|  | ${ }^{\text {a }}$ 8120-2585 | 4 | 5 | IJNMARKED W3 | 23480 | B1280-2585 |
| W4 | $\begin{gathered} 003325-61601 \\ 8120-2585 \end{gathered}$ | 6 4 |  | CADIE ASSY - 0-20 REAR UNMARKED W4 | $\begin{aligned} & 28480 \\ & 23480 \end{aligned}$ | $\begin{aligned} & P / 003325-61601 \\ & 8120 \cdots 2585 \end{aligned}$ |

Table 6-3. Replaceable Parts

| Reference Designation | HP Part Number | $\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$ | Qty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| W5 | F/ $\begin{gathered}10033259.61601 \\ 8120-2595\end{gathered}$ | 6 4 |  | CAEME ASEY REGR SYNC, WNMAKKD WE | 23489 28480 | P/7 03325.61691 $9 \times 20.2505$ |
| W6 | 9120-2491 | 1 | 1 | CAEEE ASSY RAANG 24-CNDCT | 28460 | 8129-2491 |
| W7 | $\text { pro } 03325-61601$ | 4 |  | CADLE ASSY AMPTD MOD UNMARKED W7 | 288880 |  |
|  | 3120-2535 | 4 |  | UNMARKEI) W7 | 28480 | 6120-2585 |
| W6 | P) $003325-616011$ | 6 |  | CATLE AGEY - 106KHZ | 28460 23480 | $p / 003325061601$ <br> 0120.2595 |
| Ws | $6120-2595$ | 4 |  | UNMARKED LAB | 23480 <br> 28490 <br>  | $8120 \cdot 2585$ <br> P/0 03 325-61601 |
| W9 | $\begin{gathered} p(003325-61601 \\ 8120-2597 \end{gathered}$ | 6 | 2 | CAELE ASSYM2 MrIz | 28490 23460 | P/0 0-325-61601 $8120-2587$ |
| W10 | $\text { P o } \begin{gathered} 0325-61601 \\ 8120-2587 \end{gathered}$ | 6 6 |  | CAELEE ASSY-1MHZ | 288880 | $\begin{aligned} & p / 0 \quad 13325-61601 \\ & 8120-2587 \end{aligned}$ |
| W11 | f(0) 03, $255-61601$ | 6 |  | Cable ascy-Extref | 28480 | P/0 03325-6160 |
| Wir | - $81210-2586$ | 5 | 1 | UNMARKED W11 | 29430 | 8120.2586 |
| W12 | 0.3325-61604 | a | 1 | CEL ASSY-Z HLK | 23480 29490 | $18325-61604$ $03325-61619$ |
| W13 | 03325561619 | 7 | 1 | CEL ASEY-MKR CRI. ASSY | 28490 28480 | -03325-61619 |
| W14 | 03325-61620 | 2 | 1 | CEI. ASSY | 28480 | 6.532.5-6.6e0 |
| \$15 | 0332.5-61606 | 4 | 1 | CEE ASSY-VTO | 23490 29480 | $\begin{aligned} & 03325-81606 \\ & 0330561607 \end{aligned}$ |
| W16 | $03325-61607$ | 5 6 | 1 | CBL ASSY-ӨM | 288480 | 03225-61609 |
| W17 W18 W | $03325-61608$ $03325-61609$ | 6 7 | 1 | CBL ASSY-PHASE DET | 28480 | 035325-61609 |
| W19 | 03325-61610 | 0 | 1 | Cable assy-guen | 28480 | 03325-61610 |
| W20 | 03325-61605 | 3 | 1 | CABLE ASSY - HIT U1 | 28480 | 03325-61605 |
| W21 | 93325-61621 | 3 | 1 | CAELE ASSY - HI VZ | 28480 28400 | 0382561621 |
| W23 | $0 \times 325-61611$ $03 \times 25-61603$ | 1 | 1 | CEL ASSY PWR CON | 288880 | $03.325-616013$ |
| W23 |  | - | 1 | CEL ASSY-MXR | 28480 | 0.3325-61618 |
| W25 | 03325-61612 | $z$ | 1 | CSI. ABSY FAN | 23400 | 03325-61612 |
| wab | 03325 --61613 | 3 | 1 | CEL ASSY-HPTE | 28490 218480 | $83325-61613$ $4325-61614$ |
| nez | $\frac{03325-61614}{}$ | , | 1 | CEL ASSY-KEYBD CAFLE ASSY-HIGH AMP POWER (OP 00a) | 28480 20160 | ${ }^{133325-61614}$ |
| W2\% | P/09100-4099 | $\frac{1}{6}$ | 1 |  | $2 \mathrm{CAB0}$ | 03325-61616 |
| W30 | 8120-3216 | 0 | 1 | FLAT RIADON ASSY E8-ALC 14-COND | 29480 | घ120-3216 |
| W/31 | 3120-310日 |  | 3 | FLAT R PBECN ASSY 28-ALC $21-\mathrm{COND} 5-1 \mathrm{~N}-\mathrm{LG}$ | 20480 | 8120-3106 |
| W32 | $3120 \cdots 3100$ | 9 |  | FLAT RIBEON ABSY 2B-AWG 21 --COND 5 -IN-LG | 2848460 | $92003109$ |
| W33 | $9120-3108$ $8120-1348$ | 9 5 |  | FLAT RIEEON ASSY 28-AWG $21-\mathrm{COND}$ E-IN-LG CAELE ASSY GAWG 3-CNDCT GLK-JKT | 20460 20460 | 8128-3108 |
| $W 3 / 4$ $W 35$ | $8120-1348$ 0.3325961601 | 5 9 | 1 1 |  | 283480 | $03325-61681$ |
|  |  |  |  | B, 9, 10, 11 |  |  |
| W36 | 03325-6,1622 | 4 | 1 | CARLE ASSY +15 V | 28430 | 03325-61622 |
| W:37 | 0.3325 .61623 | 5 | 2 | CABLE ASSY +1SV UNREG | 28480 28480 | $\frac{0}{03325 \cdots 1623}$ |
| W40 | 03325-61623 | 5 |  | CRL ASSY-CUTPUT | 28430 | 03*25-61623 |
| XCF' 1 | 2110-0545 | 5 | 1 | Fusemolder cap bayonet; 6.3a, 2500 max | 29480 | 2110.0545 |
| XFi | 2110-0543 | 3 | 1 | Fusendoder body extr pet; bayonet; tho | 23480 | 2110-0:543 |
|  | $00310-489101$ | 0 | 1 | WASHER SHI_DR. | 28480 28480 | $00310 \cdots 49001$ $03325-04105$ |
|  | 83325-04105 | - | 1 | COVER OP/SUC MANL.-A | 28480 28480 | 03325-04105 |
|  | $03325-90013$ | 8 | 1 | Op MANL-A | 2 CabB | 03325 m 90013 |
|  | $03600-1610$ | 4 | 2 | TERMINAL-SLDR LUG PL-MTG FOR-**SCR | 23480 | 0360-1610 |
|  | 0361-0311 | 9 | 2 | RIVET SEmi --TURULAR | 28484 | D361-6011 |
|  | 03880-0111 | 0 | 48 | STANDOFF-RUT-ON, 2S-IN-LG 6 -32THD | 060008 | ORDER EY DEEGRTPTION |
|  | 0,380-0644 | 4 | 2 | GTANDOFF-HEX SET-IN-L6 6-327HD | 00000 | ORDER BY DEGCRIPTION $0460 \cdots 1336$ |
|  | 8,46001336 0.590 .0167 | 3 1 1 | 4 |  | ${ }_{26480}^{28080}$ | $0590-0167$ |
|  | 0590-0343 | 5 | 18 | THREADED INSERT--NUT 4-40 062-IN-LG | 25480 | 0590-0343 |
|  | 0624-0208 | 4 | 9 | SCREW-TPG $6-32,5-$ IN-LG PAN-HD-POZI STL | 29460 | 0624-0209 |
|  | 3624-02a7 | 7 |  | SCREW-TPG $4-40$, 25-IN-LG PAN-HD-POZT STL. | 010000 |  |
|  | 0890-0012 | ${ }_{9}$ | 1 |  | 20800 | ORDER EY degcription |
|  |  |  |  |  |  |  |
|  | $1205-13586$ $1400-0249$ | 6 0 | 1 8 8 |  | ${ }_{36383}$ | PLTM-8 |
|  | 1400.0719 | , | 1 | CAELE TIE: $062 \cdots 1.125-\mathrm{DIA}$, 14 -WD NYL | 28490 | 1400-0719 |
|  | 2190-0020 | 9 | 12 | WASHER -LK HLCL NO. 5 . 128 -IN-ID | 29460 | 21900.020 |
|  | 2190-6034 | 5 | 2 | WASHER-LKK HLCL. NO, 10 (194-IN-TD | 23460 | 2190-00034 |
|  | 2190-0073 | 2 | 4 | WASHER-LK HLCL NO. 8 . 168 -IN-TD | 28480 | $2190 \cdots 0073$ |
|  | 2190.0575 | 9 | 1 | WASHER -LK TITTL T $1 / 2$ TN G4 IN-MD | 28480 | $\begin{aligned} & 2190 \cdots 0575 \\ & 2190-0918 \end{aligned}$ |
|  | $2190-0918$ $2000-7101$ | 4 0 | 6 11 |  | 28480 00000 | ORDER EY DEGCRIPTION |
|  | 2200-0103 | 2 |  | SCREW-MACH 4-40 2S-IN-LG PAN-H1-POZI | 28480 | 220400103 |
|  | 2200-0123 | 6 | 12 | SCREN-TACH 4-40 1, 25-xn-le PaN-HD-POZI | 80000 | order by description |
|  | 2360-0113 | 2 |  | SCREW-MACH 6-32 . 25 -IN-LG PAN-HD-PIOZI | 00000 | ORDER EY DESCRTPTION |
|  | 23860 -0114 | 3 | 5 |  | 00009 00090 | ORDER BY DESCRIPTION |
|  | 2336000114 $2360 \cdots 115$ | 3 <br> 4 | 5 |  | ${ }^{00000}$ | order by degcription |
|  | 2360-0123 | 6 | 4 | SCREW-MACH 6-32 . 75 -IN-L.G PAN.-HD-POZX | 00000 | gader by degeription |
|  | 2360-0201 | 9 | , | SCREW-WACH 6-32, $5-1 \mathrm{~N}-\mathrm{LG}$ PAN - HD - POZI | 000009 | GRDER EY DEECRIPTMON |
|  | 2420-0902 | 6 6 6 | 4 |  | 28.431 010000 | Corder by deocription |
|  | 2510-0192 | 6 | 16 4 4 |  | 000000 | ORDER GY DESCRIPTION |

[^13]*Indicates factory selected value

Table 6-3. Replaceable Parts

| Reference Designation | HP Part Number | $\begin{array}{\|l} \mathrm{C} \\ \mathrm{D} \end{array}$ | Qty | Description | Mfr Code | Mfr Part Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $3050-01027$ $3050-0.066$ $3050-0716$ 300008835 $6960-0027$ | $\begin{array}{\|l\|} \hline 1 \\ B \\ 5 \\ \hline \\ \hline 3 \\ \hline \end{array}$ | 4 2 1 1 1 | ```WASHER-FL MTLC NO, 1B .203-IN-ID WABHER-FL_ MTLE NO,6.147"IN-ID WASHER-FL MTLE NO. 5 .129-IN-ID WAGHER-FL NM 9/16 IN .63-TN-TD ,75-IN-OD PLJG-HOLE ,625``` | 29480 20480 29480 28480 28480 2940 | $\begin{aligned} & 3050-0027 \\ & 3050-0066 \\ & 3050-8716 \\ & 3050 \cdot 0035 \\ & 6960-6027 \end{aligned}$ |
|  | $7120-6482$ $7120-8539$ $9211-2257$ $9292-0906$ JUMPER | $\begin{array}{\|l} 7 \\ 9 \\ 1 \\ 2 \\ 0 \\ 0 \end{array}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | LABEL-TNFORMATION .B7S-IN-WD 1.72S-IN-LG LADEL-WARNING $1.3-1 N-W D 1.6-I N-L G E T N Y L$ CARTON-CORR RSC $26.75-\mathrm{T} 4-\mathrm{L}$ G $24.75-\mathrm{IN}$-WD CHANTEEL W/ELASTIC GRIP .5"-IN-WD CUT JUMPER | $\begin{aligned} & 28480 \\ & 28480 \\ & 28480 \\ & 28490 \\ & 28480 \end{aligned}$ | $\begin{aligned} & 7120-6.462 \\ & 7120.8539 \\ & 9211-257 \\ & 9282-1906 \\ & \text { UMMPER } \end{aligned}$ |
|  | LUG-JUMPER | 4 |  | Cut Jumper | 28480 | LUGO-TUMPER |

See introduction to this section for ordering information
*Indicates factory selected value

Fis6.1 she $\log 4$


TOP VIEW


BOTtOM VIEW

Fig6-1 sht aof 4



Fig $6-1$
$5 \operatorname{sit} 3$ of 4


$$
\begin{aligned}
& \text {-ig } 61 \\
& 54+4 \text { of } 4
\end{aligned}
$$



MPI7

Figure 6-1. Location of Parts.
6-31/6-32

## SECTION VII <br> manual backdating

### 7.1. Introduction.

7-2. The contents of this manual apply to all instruments. Earlier versions of this instrument, however, differ in design and appearance from those currently being produced. The information in this section documents the earlier instrument configurations and associated servicing procedures. Also included is information on recommended modifications for improvements to earlier instruments.

The following backdating information is organized by service group with all applicable information placed together for easy reference. Refer to Table 7-1 for a listing of the 3325A PC asscmblies and their current (May 1984) revision,

## 7-3. Format.

7-4. Design, component, and documentation changes to this instrument are identified by a $\Delta$ symbol. The numbered delta in the text or on a schematic corresponds to the numbered delta shown in the heading that precedes the backdating information for that particular service group. When a delta symbol is cncountered, the technician should first refer to the corresponding service group in this section. Once there, locate the page number where the delta symbol was found and determine if the change applies by checking the instrument's serial number against the range given.

### 7.5. Change Sheets and Service Notes.

7-6. As HP continues to improve the performance of the 3325A, corrections and modifications to the manual may be required. These changes are documented in a yellow "MANUAL CHANGES" supplement. In order to keep the manual up to date, one should periodically request the most recent supplement which is available from the nearest HP Sales and Service Office.

7-7. The instrument related service note is a publication directed toward qualified service personnel and is available to all HP Service Centers and customers. The service note conveys service-related information that is intended to increase the reliability, improve the performance, and extend the usefulness of your HP instrument. Copies of available service notes can be obtained from your nearest HP Sales and Service Office listed at the back of this manual.

Table 7-1. 3325A Cireuit Boards Revisions.

| Assambly | Reference Dosignator | Service Group(s) | Revision |
| :---: | :---: | :---: | :---: |
| 03325-66502 | A2 | $\bigcirc$ | F |
| 03325-66503 | A3 | D,G,H | c |
| 03325-66505 | A5 | A | c |
| 03325-66506 | A6 | B,C | C |
| 03325-66508* | A8 | M | A |
| 03325-66509 * | A9 | M | A |
| 03325-66514 ** | A14 | I,J,K,L,N | C |
| 03325-66521 *** | A21 | D, E, F | C |
| 03325-66523*** | A23 | L | B |

* 03325-66508 is the High Voltage Output Option (Opt, OO2)
* 03325-66509 is the High Stability Frequency Reference Option (Opt. 001)
** ${ }^{*} 3325 A^{\prime}$ s with serial number 1748A01900 or below, the part number for this assembly was 03325-66504 (A4).
*** In 3325A's with serial number 1748A02475 or below, the part number for this assembly was 03325-66501 (A1).
*** in 3325A's with serial number 1748A00700 or below, the part number for this assembly was $03325-66507$ (A7).


### 7.8. Backdating Information.

## 7-9. Service Group A - Keyboard and Display (03325-66505) $\Delta 1$.

7-10. A5 - Past to Present. Table 7-2 briefly summarizes the engineering effort that has brought A5 to its current revision.

Table 7.2. A5 Board Revisions.

| Bard Revision | Instruments Shippad With This Revision* | Board Changest |
| :---: | :---: | :---: |
| A5 - Rev A | 1748A00101-1748A02911 | - |
| - Rev B | 1748A02912-1748A03725 | went Rev B when board was modified to simplify manuf. procedure. No circuit or layout changes. |
| - Rev C | 1748A03726-Present | went Rev C when PC traces were moved. No circuit or comp. layout changes. |
| * Note that all serial number ranges are approximate. |  |  |

7-11. All A5 board revisions are identical in design and component layout.

## 7-12. Service Group B - HP-IB Circuits ( $\mathrm{P} / \mathbf{0} \mathbf{0 3 3 2 5 - 6 6 5 0 6}$ ) $\Delta \mathbf{2}$.

7-13. A6-Past to Present. Table $7-3$ briefly summarizes the engineering effort that has brought A6 to its current revision.

Table 7-3. A6 Board Revisions.

| Board Revision | Instruments Shipped With This Revision" | Board <br> Changes |
| :---: | :---: | :---: |
| A6-Rev A <br> - Rev B <br> - Rev C | $\begin{gathered} 1748 \mathrm{~A} 00101-1748 \mathrm{~A} 00130 \\ 1748 \mathrm{~A} 00131 \cdot 1748 \mathrm{~A} 00230 \\ \text { 1748A00231-Present } \end{gathered}$ | went Rev $B$ when test points were added. <br> went Rev C when design changes were made to improve $\mu \mathrm{P}$ interrypt ckty. See Service Group C. |
| * Note that all serial number ranges are approximate. |  |  |

7-14. There have been no design or component layout changes to the HP-IB section of the A6 assembly.
If the A6 assembly ( $03325-66506$ ) is replaced in instruments with serial number 1748A04250 or below, there may be a compatibility problem between the older cables used in the instrument and the connectors on the new board. Refer to paragraph $8-113$ in Section VIII if replacement of A6 is necessary.

### 7.15. Service Group C - Control Circuits (P/0 03325-66506) $\mathbf{\Delta 2}$.

7-16. A6 - Past to Present. Table 7-4 briefly summarizes the engineering effort that has brought A6 to its current revision.

Table 7-4. A6 Board Revisions.

| Board Rovision | Instruments \$hipped With This Revision" | Board Changes |
| :---: | :---: | :---: |
| A6-Rev A | 1748A00101-1748A00130 | - |
| - Rev B | 1748A00131-1748A00230 | went Rev $B$ when test points were added. |
| - Rev C | 1748A00231 - Present | went Rev C when design changes were made to improve $\mu \mathrm{P}$ interrupt ckty. |
| * Note that all serial number ranges are approximate. |  |  |

7-17. The following backdating information pertains to the Control Circuits portion of the A6 assembly.
$\Delta 2$ - Page 8-C-37, Figure 8-36.
Affected instruments: serial numbers 1748A00230 and below.

The above range of instruments do not have $R 2$ ( $7.5 \mathrm{k} \Omega \mathrm{p} / \mathrm{n} 0683-7525$ ), CR2 (p/n 1901-0040), or $\mathrm{C} 7(0.01 \mu \mathrm{~F} \mathrm{p} / \mathrm{n} 0160-3847)$. These instruments also contain the following processor interrupt circuitry involving U42 and U34.


Figure 7-1. Processor Interrupt Circuitry (Serial Numbers 1748A00230 and Below*).

* All part numbers remain the same.
$\Delta 2$ Page 8-C-37, Figure 8-36.
Affected instruments: serial numbers 1748 A 02600 and below.
The above range of instruments contain resistors R11 and R12 (p/n 0683-1825). See Figure 7-2 for schematic and board location.


Figure 7.2. Schematic and Board Location of R11 and R12 (Serial Numbers $1748 \mathrm{A02600}$ and below).

Affected instruments: serial numbers 1748A04250 and below.

Instruments in the above range may have an A6 board which contains connectors $\mathrm{J} 2, \mathrm{~J} 3, \mathrm{~J} 4,(\mathrm{p} / \mathrm{n}$ 1251-4494) for use with cables W31, W32, W33 (p/n 8120-2577). These older (black) connectors and (whitc) cables have been replaced on newer boards by more reliable connectors (orange - $\mathrm{p} / \mathrm{n}$ 1251-6567) and cables (gray - 8120-3108). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the A6 board in the above instruments is replaced, the connectors on the older destination assemblies (A3, A14(4), A21(1)) will have to be changed also. See paragraph 8-113 in Section VIII for more information.

Note also that on the older A6 boards used in the above instruments, cable W36 (p/n 03325-61622) was used to carry supply current to the $\mathrm{Al4}(4)$ board in parallel with W33. With the newer cables on the newer boards, W36 is not needed. However, if one chooses to modify the newer board to use the older (1251-4494) connectors and cables (8120-2577), W36 is required.
$\Delta 2$ - Page 8-C-37, Figure 8-36.

Affected instruments: All

Due to earlier fabrication processes, it was necessary to pad the value of A6R8 in order to set the nanoprocessor's (A6U9) backgate voltage ( $V_{B C}$ ) to the voltage stamped on the processor. Briefly, processors stamped with the following voltages require the corresponding padded values for A6R8:

| $\mathbf{V}_{\text {B }}$ | A6R8* | -hp. Part Number |
| :--- | :---: | :---: |
|  |  |  |
| -2.0 V | 34.8 k | $0757-0123$ |
| -2.5 V | 26.7 k | $0698-4488$ |
| -3.0 V | 21.5 k | $0757-0199$ |
| -3.5 V | 17.4 k | $0698-4482$ |
| -4.0 V | 14.7 k | $0698-3156$ |
| -4.5 V | 12.7 k | $0698-3359$ |
| -5.0 V | 9.53 k | $0698-4020$ |

Note that the nanoprocessor's fabrication process has been controlled to the extent that $\mathrm{V}_{\mathrm{BG}}$ on all processors is now -5.0 V . Therefore, if A6U9 is replaced ( $\mathrm{p} / \mathrm{n} 1820-1691$ ), insure that A 6 R 8 is $9.53 \mathrm{k} \Omega$.

## 7-18. Service Group D • Voltage Controlled Oscillator Shield (P/0 03325-66521) $\mathbf{\Delta 3}$.

7-19. A21 - Past to Present. Table 7-5 summarizes the engineering changes that have brought A21 to its current revision.

Table 7-5. A21(A1) Board Revisions.

| Board Revision | Instruments Shipped With This Revision* | Board Changes |
| :---: | :---: | :---: |
| A1-Rev A | 1748A00101-1748A00230 | - |
| - Rev 8 | 1748A00231-1748A02475 | went Rev B when U25 and assoc. ckty were added to reclock HINV to the Frac. N IC. See Svc. Grp. E. |
| A21-Rev A | 1748A02476-1748A02600 | went A21 Rev A following redesign and layout of the VCO, plus mod. to the S/H ckty. See Svc. Grps. D, E, F. |
| - Rev B | 1748A02601-1748A07390 | Rev B boards are identical to Rev $A$, with the exception of PC trace location. |
| - Rev C | 1748A07391-Present | went Rev C following mod. to VCO ckty. See Svc. Grp. D. |
| * Note that all serial number ranges are approximate. |  |  |

7-20. The following backdating information pertains to the VCO portion of the $A 21(A 1)$ assembly.
$\Delta 3$ - Page 8-D-7/8-D-8, Figure 8-37.
Affected instruments: serial numbers 1748A02475 and below.
The above range of instruments contain an 03325-66501 assembly with the VCO design and layout shown in Figure 7-3. Note that in instruments with serial numbers 1748A00231 to 1748A02475, A1C177 is tied to +5 V .


Figure 7-3. VCO Circuitry. Serial Numbers 1748A02475 And Below.

Affected instruments: serial numbers 1748A02476 to 1748A03225.
The preceding range of instruments contain the VCO circuitry shown in Figure 7-4, but do not have R216.
$\Delta 3$ - Page 8-D-7/8-D-8, Figure 8-37.
Affected instruments: serial numbers 1748A03226 to 1748A07390.
The preceding range of instruments contain the VCO circuitry shown in Figure 7-4.


Figure 7-4. VCO Circuitry - Serial Numbers 1748A03226 to 1748A07390.
For instruments with serial numbers 1748 A02476 to 1748 A04675, refer to Service Note 3325A-9 if necessary for a modification procedure to prevent oscillator failures.
$\Delta 3$ - Page 8-D-7/8-D-8, Figure 8-37.
Affected instruments: serial numbers 1748A04250 and below.
Instruments in the preceding range may have an A21(A1) board which contains connector J1 (p/n 1251-4494) for use with cable W31 (p/n 8120-2577). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable connector (orange - $\mathrm{p} / \mathrm{n}$ 1251-6567) and cable (gray - p/n 8120-3108). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the $\mathrm{A} 21(\mathrm{~A} 1)$ assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII for additional information on connector/cable compatibility.

### 7.21. Service Group $E \cdot \div$ N.F Counter ( $\mathbf{P} / \mathbf{0}$ 03325-66521) $\Delta 3$.

7-22. A21 Past To Present. Table 7-6 summarizes the engineering changes that have brought A21 to its current revision.

Table 7-6. A21(A1) Board Revisions.

| Board Revision | Instruments Shipped With This Revision* | Board <br> Changes |
| :---: | :---: | :---: |
| A1-Rev A | 1748A00101-1748A00230 | - |
| - Rev B | 1748A00231-1748A02475 | went Rev B when U25 and assoc. ckty were added to reclock HINV to the Frac. N IC. See Svc. Grp. E. |
| A21-Rev A | 1748A02476-1748A02600 | went A21 Rev A following redesign and layout of the VCO, plus mod, to the S/H ckty. See Svc. Grps. D, E, F. |
| - Rev B | 1748A02601-1748A07390 | Rev B boards are identical to Rev A, with the exception of PC trace location. |
| - Rev C | 1748A07391-Present | went Rev C following mod, to VCO ckty. See Svc. Grp. D. |
| * Note that all serial number ranges are approximate. |  |  |

7-23. The following backdating information pertains to the $\div$ N.F Counter portion of the A21(A1) assembly.

## $\Delta 3$ - Page 8-E-3/8-E-4, Figure 8-38.

Affected instruments: serial numbers 1748A0230 and below.
The above range of instruments contain the HINV clocking circuitry shown in Figure 7-5.
Note - the -hp- part number for U5 is 1820-1112.


Figure 7-5. HINV Clocking Circuitry - Serial Numbers 1748A00230 And Below.

Affected instruments: serial numbers 1748A01200 and below.
The preceding range of instruments do not have R146.
$\Delta 3$ - Page 8-E-3/8-E-4, Figure 8-38.
Affected instruments serial numbers 1748A02475 and below.
The preceding range of instruments contain the U8 gating circuitry shown in Figure 7-6.


Figure 7.6. A21U8 Gating Circuitry. Serial Numbers 1748A02475 and Below.
$\Delta 3$ - Page 8-E-3/8-E-4, Figure 8-38.
Affected instruments: serial numbers 1748A02476 to 1748A07390.
The above range of instruments contain the U8 gating circuitry shown in Figure 7-7.


Figure 7.7. A21U8 Gating Circuitry - Serial Numbers 1748A02476 to 1748A07390.
$\Delta 3$ - Page 8-E-3/8-E-4, Figure 8-38.
Affected instruments: serial numbers 1748 A 04250 and below.
Instruments in the preceding range may have an A21(A1) board which contains connector J1 (p/n 1251-4494) for use with cable W31 (p/n 8120-2577). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable connector (orange - $\mathrm{p} / \mathrm{n} 1251-6567$ ) and cable (gray - p/n 8120-3108). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the $\mathrm{A} 21(\mathrm{~A} 1)$ assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII for additional information on connector/cable compatibility.

### 7.24. Service Group F • Fractional N Analog Circuits ( $\mathbf{P} / \mathbf{0}$ 03325-66521) $\Delta 3$.

7-25. A21 Past To Present. Table 7-7 summarizes the engineering changes that have brought A21 to its current revision.

Table 7-7. A21(A1) Board Revisions.

| Board <br> Revision | Instruments Shipped With This Revision* | Board <br> Changes |
| :---: | :---: | :---: |
| A1-Rev A | 1748A00101-1748A00230 | - |
| - Rev B | 1748A00231-1748A02475 | went Rev B when U25 and assoc. ckty were added to reclock HINV to the Frac. N IC. See Svc. Grp. E |
| A21-Rev A | 1748A02476-1748A02600 | went A21 Rev A following redesign and layout of the VCO, plus mod. to the S/H ckty. See Svc. Grps. D, E, F. |
| - Rev B | 1748A02601-1748A07390 | Rev $B$ boards are identical to Rev A, with the exception of PC trace location. |
| - Rev C | 1748A07391-Present | went Rev C following mod. to VCO ckty. See Svc. Grp. D. |
| * Note that all serial number ranges are approximate. |  |  |

7-26. The following backdating information pertains to the Fractional N Analog Circuits portion of the A21(A1) assembly.
$\Delta 3$ - Page 8-F-5/8-F-6, Figure 8-39.
Affected instruments: serial numbers 1748A02475 and below.
This range of instruments contain the integrator and phase modulation circuitry shown in Figure 7-8.


Figure 7.8. Integrator and Phase Modulation Circuitry - Serial Numbers 1748A02475 and Below.

This same range of instruments contain the Sample/Hold circuitry shown in Figure 7-9.


Figure 7-9. Sample/Hoid Circuitry (Serial Numbers 1748A02475 and Below).

In the Sample/Hold Circuitry of Figure 7-9, R107 may be one of the following padded values:

$$
\begin{array}{r}
750 \Omega 0757-0420 \\
374 \Omega 0698-4452 \\
1330 \Omega 0757-0317 \\
2000 \Omega 0757-0283
\end{array}
$$

$\Delta 3$ - Page 8-F-5/8-F-6, Figure 8-39.
Affected instruments: serial numbers 1748A02850 and Below.
These instruments do not have C33. C33 was added to reduce Fractional N spurs at 20 MHz .
$\Delta 3$ - Page 8-F-5/8-F-6, Figure 8-39.
Affected instruments: serial numbers 1748A02476 to 1748A07390.
These instruments contain the Sample/Hold circuitry shown in Figure 8-39. These instruments do not, however, have CR20.
$\Delta 3$ - Page 8-F-5/8-F-6, Figure 8-39.
Affected instruments: serial numbers 1748A04250 and below.

Instruments in this range may have an A21(A1) board which contains connector J1 (1251-4494) for use with cable W31 (p/n 8120-2577). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable connector (orange - p/n 1251-6567) and cable (gray - p/n 8120-3108). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the $\mathrm{A} 21(\mathrm{~A} 1)$ assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII for additional information on connector/cable compatibility.

### 7.27. Service Groups D and G - VCO Buffer (P/O 03325-66503), 30MHz Reference and Dividers (P/0 03325-66503) $\Delta 4$.

7-28. A3-Past to Present. Table 7-8 briefly summarizes the engineering changes that have brought A3 to its current revision.

Table 7.8. A3 Board Revisions.

| Board <br> Revision | Instruments Shipped <br> With This Revision" | Board <br> Changes |
| :---: | :---: | :---: |
| A3 - Rev A | 1748 A00101-1748A00470 | - |
| - Rev B | 1748 A00471-1748A04675 | went Rev B with modification to <br> 20MHz LPF. See Svc. Grp. H. |
| - Rev C | $1748 A 04676-$ Present | went Rev C when modifications <br> were made to the mixer driver and <br> multiplier ckty. |

7-29. There is no backdating information for the A3 VCO Buffer circuitry at this time.
7-30. The following backdating information pertains to the 30 MHz reference and divider portion of the A3 assembly.
$\Delta 4$ - Page $8-G-3 / 8-G-4$, Figure 8-40.
Affected instruments: serial numbers 1748A00620 and below.
The preceding range of instruments contain the biasing circuitry for U14 shown in Figure 7-10. Components unique to this design include:

A3R71 $10 \mathrm{k} \Omega \mathrm{p} / \mathrm{n} 0683-1035$ A3R74 10k $\Omega \mathrm{p} / \mathrm{n} 0683-1035$ A3R89 4.7k $\Omega \mathrm{p} / \mathrm{n}$ 0683-4725


Figure 7-10. U14 Biasing Circuitry (Serial Numbers 1748A00620 and Below).
$\Delta 4$ - Page $8-\mathrm{G}-3 / 8-\mathrm{G}-4$, Figure 8-40.
Affected instruments: serial numbers 1748A02600 and below.
The preceding instruments do not have C20.
$\Delta 4$ - Page 8-G-3/8-G-4, Figure 8-40.
Affected instruments: serial numbers 1748A04675 and below.
The preceding range of instruments contain the sine amplitude control and amplitude modulation circuitry shown in Figure 7-11. These instruments also do not have A3R85 or A3R90 (see Figure 8-40).


Figure 7-11. Sine Amplitude Control and Amplitude Modulation Circuitry (Serial Numbers 1748A04675 and Below).
$\Delta 4$ - Page 5-3, paragraph 5-13.
Affected instruments: serial numbers 1748A04675 and below.
For these instruments, the following Amplitude Calibration adjustment procedure should be used.

## Equipment Required:

Oscilloscope (-hp- Model 1740A)
10:1 Oscilloscope Probe (-hp- Model 10041A)
DC Power Supply (-hp- Model 6214A)
Oscillator (-hp- Model 204C)
AC Digital Voltmeter (-hp- Model 3466A)
a. Set the 3325 A as follows:

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sine
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 kHz
Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Vp-p
DC Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 mV
Amplitude Modulation . . . . . . . . . . . . . . . On
b. Disconnect cable W7 from A3J7.

## CAUTION

Do not allow disconnected cable connectors to contact the printed circuit board or components, or circuits may be damaged.
c. Adjust the dc power supply output to approximately +3 V and connect between the center contact of A3J7 and ground.
d. Disconnect cable W23 from A3J23.
e. Mcasure the oscillator (-hp-204C) output with the ac digital voltmeter and adjust the output level to approximately 1 Vrms at a frequency of 1 kHz . Connect the oscillator output between the center contact of A3J23 and ground.
f. Connect the oscilloscope through a $10: 1$ probe to A3TP4. Set the oscilloscope input to ac coupled, sweep to $1 \mathrm{~ms} /$ div.
g. Adjust the de power supply output voltage to null out the sine wave signal on the display. (Change the oscilloscope vertical gain as necessary to observe the signal.)
h. Ground the oscilloscope input and zero the trace on the center line. Set the input to dc coupled.
i. Adjust Offset Out (A3R68) to return the oscilloscope trace to the center line ( 0 Vdc ).
j. Disconnect the de power supply and the oscillator and reconnect cables W7 and W23.
k. Set 3325A amplitude modulation off.

1. Connect an ac digital voltmeter to the 3325A signal output.
m. Press the AMPTD CAL key.
n. Adjust Offset in (A3R33) for a voltmeter reading of 0.707 V rms.
o. Repeat steps $m$ and $n$ until the output voltage of 0.707 Vrms does not change when the AMPTD CAL key is pressed.
$\Delta 4$ - Page 8-G-3/8-G-4, Figure 8-40.
Affected instruments: serial numbers 1748A04250 and below.
Instruments in the preceding range may have an A3 assembly which contains connector J 1 ( $\mathrm{p} / \mathrm{n}$ 1251-4494) for use with cable W33 (p/n 8120-2577). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable connector (orange - $\mathrm{p} / \mathrm{n} 1251-6567$ ) and cable (gray - $\mathrm{p} / \mathrm{r} 8120-3108$ ). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the A3 assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII for additional information on connector/cable compatibility.

### 7.31. Service Group H - Mixer (P/0 03325-66503) $\Delta 4$.

7-32. A3-Past to Present. Table 7-9 briefly summarizes the engineering changes that have brought A3 to it current revision.

Table 7-9. A3 Board Revisions.

| Board Hevision | Instruments \$hipped With This Revision" | Board Changes |
| :---: | :---: | :---: |
| A3-Rev A | 1748A00101-1748A00470 | - |
| - Rev B | 1748A00471-1748A04675 | went Rep B with modification to 20 MHz LPF. |
| - Rev C | 1748A04676-Present | went Rev C when modifications were made to the mixer driver and multiplier ckty. |
| * Note that all serial number ranges are approximate. |  |  |

7-33. The following backdating information pertains to the mixer portion of the A 3 assembly.
$\Delta 4$ - Page 8-H-3/8-H-4, Figure 8-41.
Affected instruments: serial numbers 1748A00470 and below.
Instruments in this range do not have A3R126 or A3C120.

## $\Delta 4$ - Page 8-H-3/8-H-4, Figure 8-41.

Affected instruments: serial numbers 1748A04675 and below.
These instruments contain the mixer driver circuitry shown in Figure 7-12. Note that the part number for A3U16 in this earlier design was $1858-0015$.


Figure 7-12. Mixer Driver Circuitry (Serial Numbers 1748A04675 and Below).

If reliability problems with U16 are encountered in these earlier instruments, refer to Service Note 3325A-7. This service note describes a check of the mixer driver current and subsequent adjustment to reduce the current, thereby improving U16's reliability. Note that the performance test steps and adjustments referred to in this service note may not correspond directly with the steps currently found in Sections IV and V.

If status byte problems are encountered in instruments with serial number 1748A01300 and below, change C8 to a $22 \mu \mathrm{~F}$ capacitor ( $\mathrm{p} / \mathrm{n} 0180-0228$ ).

### 7.34. Service Group I D/A Converter And Sample/Hold (P/O 03325-66514) $\Delta 5$.

7-35. A14-Past To Present. Table 7-10 briefly summarizes the engineering and manufacturing changes that have brought A 14 (A4) to its current revision.

Tahle 7.10. A14(A4) Board Revisions.

| Board Revisian | Instruments Shipped With Thist Revision" | Board Changes |
| :---: | :---: | :---: |
| A4 - Rev B** | 1748A00101-1748A00190 | - |
| - Rev C | 1748A00191-1748A00470 | went Rev C following PC trace and manu. mods. |
| - Revo ${ }^{\text {d }}$ | 1748A00471-1748A01075 | went Rev D following manu. changes and the addition of CR108, CR109, and R55. |
| - Rev E | 1748A01076-1748A01900 | went Rev E following mods. to the relay driver and dc offset control portion of A4. |
| A14.Rev A | 1748A01901-1748A08790 | went A14 Rev A when output amp (Sve. Grp. K) was redesigned. R142 was also added. |
| - Rev B | 1748A08791-1748A14537 | went A14 Rev B with changes to dc offset and amptd. control circuitry. |
| - Rev C | 1748A14538-Present | went A14 Rev C following PC trace mod. to level comp. (U42) ckty. |

* Note that all serial number ranges are approximate.
** No A4 Rev A boards were ever produced.

7-36. The following backdating information pertains to the DAC and Sample/Hold portion of A14(A4).
$\Delta 5$ - Page 8-I-5/8-I-6, Figure 8-42.
Affected instruments: serial numbers 1748A00150 and below.
These instruments do not have CR108.
Affected instruments: serial numbers 1748A00470 and below.
Instruments in this serial number range do not have CR109 or R55.
$\Delta 5$ - Page 8-I-5/8-I-6, Figure 8-42.
Affected instruments: serial numbers $1748 A 01900$ and below.
For instruments in this serial number range, R40 is $20 \mathrm{k} \Omega \mathrm{p} / \mathrm{n} 2100$-0558.

Affected instruments: serial numbers 1748A04250 and below.
Instruments in this range may contain an A14(A4) board which contains connector J1 (p/n 1251-4494) for use with cable W32 ( $\mathrm{p} / \mathrm{n} 8120-2577$ ). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable connector (orange - p/n 1251-6567) and cable (gray $\mathrm{p} / \mathrm{n} 8120-3108$ ). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the A14(A4) assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII for additional replacement information.

Note also that on the older AI4(A4) boards, cable W36 was used to carry supply current from the A6 assembly to A14(A4). With the newer cables on the newer boards, W36 is not needed. However, if one chooses to modify a newer board to use the older (1251-4494) connectors and cables ( $8120-2577$ ), W36 is required.

### 7.37. Service Group J - Function Circuits (P/0 03325-66514) $\Delta 5$.

7-38. A14 - Past To Present. Table 7-11 briefly summarizes the engineering and manufacturing changes that have brought A14(A4) to its current revision.

Table 7.11. A14(A4) Board Revisions.

| Board Revision | Instruments Shipped With This Rovision* | Board <br> Changes |
| :---: | :---: | :---: |
| A4 - Rev B** | 1748A00101-1748AOQ190 | - |
| - Rev C | 1748A00191-1748A00470 | went Rev C following PC trace and manufạturing modifiçations. |
| - Rev D | 1748A00471-1748A01075 | went Rev D following manuf. changes and the addition of CR108, CR109, and R55. |
| - Rev E | 1748A01076-1748A01900 | went Rev E following mod. to the relay driver and de offset control portion of A4. |
| A14-Rev A | 1748A01901-1748A08790 | went A14 Rev A when output amp (Sve. Grp. K) was re designed, R142 was also added. |
| - Rev B | 1748A08791-1748A14537 | went Rev $B$ with changes to dc offset and amptd. control circuitry |
| - Rev C | 1748A14538 - Present | went Rev C following PC trace mod. to level comparator (U42) ckty. |
| * Note that all serial number ranges are approximate. |  |  |
| "* No A4 Rev A boards were ever produced. |  |  |

7-39. The following backdating information pertains to the function circuits portion of A14(4)
$\Delta 5=$ Page 8-J-7/8-J-8, Figure 8-43.
Affected instruments: serial numbers 1748A00190 and below.
These instruments do not have R220. R220 was added to increase the usefulness of the Amp-In test point by providing a load for current sources feeding the output amplifier. Voltages can then be measured across this resistor.
$\Delta 5$ - Page 8-J-7/8-J-8, Figure 8-43.
Affected instruments: serial numbers 1748A01075 and below.
These instruments contain the de offset control circuitry shown in Figure 7-13.


Figure 7-13. DC Offset Control (Serial Numbers 1748A01075 and Below).
Affected instruments: serial numbers 1748A08790 to 1748A01076.
These instruments contain the dc offset control circuitry shown in Figure 7-14.


Figure 7-14. DC Offset Control (Serial Numbers 1748A08790 to 1748A01076).
$\Delta 5$ - Page 8-J-7/8-J-8, Figure 8-43.
Affected instruments: serial numbers 1748A02350 and below.

These instruments do not have CR110. See Service Note 3325A-5A for a modification procedure to improve square wave phase control in these instruments.

$$
\begin{aligned}
& \text { Figs 8-36 } \\
& \text { shut } 1 \text { of } 5
\end{aligned}
$$



Note 1: Refer to paragraph 8 -113 if board replacement is necessary.

Affected instruments: serial numbers 1748A05826 to 1748A08790.
These instruments contain the amplitude control circuitry shown in Figure 7-16.


Figure 7.16. Amplitude Control Circuitry (Serial Numbers 1748A05826 to 1748A08790).
$\Delta 5$ - Page 8-J-7/8-J-8, Figure 8-43.
Affected instruments: serial numbers 1748A08790 and below.
These instruments do not have U36. In these instruments, pin 8 or 9 of U34 is connected to R101 via a jumper wire.
$\Delta 5$ - Page 8-J-7/8-J-8, Figure 8-43.
Affected instruments: serial numbers 1748A08790 and below.
Instruments in this serial number range do not have CR111 or R278.
$\Delta 5$ - Page 8 -J-7/8-J-8, Figure 8-43.
Affected instruments: serial numbers 1748A04250 and below.
These instruments may have an A14(A4) board which contains connector J1 (p/n 1251-4494) for use with cable W32 (p/n 8120-2577). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable connector (orange - p/n 1251-6567) and cable (gray - $\mathrm{p} / \mathrm{n} 8120-3108$ ). The new connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the $\mathrm{A} 14(\mathrm{~A} 4)$ assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII for additional replacement information.

### 7.40. Service Group K - Output Amplifier ( $\mathrm{P} / \mathbf{0} \mathbf{0 3 3 2 5 - 6 6 5 1 4 )} \mathbf{\Delta 5}$.

7-41. A14 - Past To Present. Table 7-12 briefly summarizes the engineering and manufacturing changes that have brought A14 to its current revision.

7-42. The following backdating information pertains to the Output Amplifier portion of A14(A4). $\Delta 5$ - Page 8-K-5/8-K-6, Figure 8-44.

Affected instruments: serial numbers 1748A01900 and below.
These instruments contain the output amplifier design shown in Figure 7-17.

Table 7-12. A14 (A4) Board Revisions.

| Board Revision | Instruments Shipped With This Revision* | Board Changes |
| :---: | :---: | :---: |
| A4 - Rev $\mathrm{B}^{* *}$ | 1748A00101-1748A00190 | - |
| - Rev C | 1748A00191-1748A00470 | went Rev C following PC trace and manufacturing modifications. |
| - Rev D | 1748A00471-1748A01075 | went Rev $D$ following manuf. changes and the addition of CR108, CR109, and R55. |
| - Rev E | 1748A01076-1748A01900 | went Rev E following mod. to the relay driver and dc offset control portion of A4. |
| A14-Rev A | 1748A01901-1748A08790 | went A14 Rev A when output amp (Svc. Grp. K) was redesigned. R142 was also added. |
| - Rev B | 1748A08791-1748A14537 | went Rev $B$ with changes to dc offset and amptd. control circuitry. |
| - Rev C | 1748A14538-Present | went Rev $C$ following PC trace mod. to level comparator (U42) ckty. |
| * Note that all serial number ranges are approximate. |  |  |
| ** No A4 Rev A boards were ever produced. |  |  |



Figure 7.17. Output Amplifier (Serial Numbers 1748A01900 and below).

Affected instruments: serial numbers 1748A01900 to 1748A00190.
Refer to Figure 7-17. Instruments in this range contain diodes CR222 and CR223 connected between pins 4 and 1 of A4U46. Note that the anode end of CR223 is connected to pin 4 and the anode end of CR222 is connected to pin 1. Referring again to Figure 7-17, these instruments also contain diodes CR224 and CR225. CR224 (cathode) is connected from the base of Q211 to the collector of Q211. CR225 (anode) is connected from the base of Q204 to the collector of Q204. Modify Figure 7-17 as necessary to show these components.
$\Delta 5$ - Page 8-K-5/8-K-6, Figure 8-44.
Affected instruments: serial numbers 1748A04250 and below.
Instruments in this range may contain an A14(A4) board which has connector Jl (p/n 1251-4494) for use with cable W32 (p/n 8120-2577). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable contector (orange - $\mathrm{p} / \mathrm{n}$ 1251-6567) and cable (gray $\mathrm{p} / \mathrm{n} 8120-3108$ ). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the A 14 (A4) assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII for additional replacement information.

## 7-43. Service Group L • Attenuator (03325-66523) and Relay Drivers ( $\mathrm{P} / \mathbf{0} \mathbf{0 3 3 2 5 - 6 6 5 1 4 )} \mathbf{\Delta 5 , \Delta 6}$.

7-44. A23 - Past to Present. Table 7-13 briefly summarizes the engineering and manufacturing changes that have brought A23(A7) to its current revision. Refer to Tables 7-10, 7-11, 7-12, or 7-14 for revision information on A14(A4).

Table 7.13. A23(A7) Board Revisions.

| Board <br> Revision | Instruments Shipped <br> With This Revision* | Board <br> Changes |
| :---: | :---: | :---: |
| A7 - Rev A | 1748 A00101-1748A00540 | - |
| A23 - Rev A | $1748 A 00541-1748 A 00950$ | went A23 Rev A following design <br> changes to improve the R/F perfor- <br> mance of the atten. |
| - Rev B | $1748 A 00951$ - Present | went A23 Rev B following PC <br> trace layout modification. |

7-45. The following backdating information pertains to the Attenuator assembly (03325-66523(07)).
$\Delta 6$ - Page 8-L-3/8-L-4, Figure 8-45.
Affected instruments: serial numbers 1748A00540 and below.

Instruments in this serial number range do not have $\mathrm{C} 15, \mathrm{C} 16$, or C 17 .
$\Delta 6$ - Page 8-L-3/8-L-4, Figure 8-45.
Affected instruments: serial numbers 1748A04400 and below.

Instruments in this serial number range have an A23(A7) assembly which contains connector $\mathrm{J} 30(\mathrm{p} / \mathrm{n}$ $1251-4390$ ) for use with cable W30 (p/n 8120-2576). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable connector (orange - $\mathrm{p} / \mathrm{n} 1251-5064$ ) and cable (gray - p/n 8120-3216). The newer connector is incompatible with the older cableas is the newer cable incompatible with the older connector. If the A23(A7) assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII. Note that similar connector/cable changes have been made to other assemblies beginning with serial number 1748 A 04250 .

7-46. The following backdating information pertains to the relay driver portion of $\mathrm{A} 14(\mathrm{~A} 4)$.

## $\Delta 5$ - Page 8-L-3/8-L-4, Figure 8-45.

Affected instruments: serial numbers 1748A01075 and below.

Instruments in this serial number range contain the relay drive circuitry shown in Figure 7-18. Note that serial numbers 1748 A 01075 to 1748 A 00231 have a capacitor ( $\mathrm{C} 26510 \mu \mathrm{~F} \mathrm{p} / \mathrm{n} 0180-0374$ ) shunting R80.


Figure 7-18. Relay Drive Circuitry (Serial Numbers 1748A01075 and Below).
$\Delta 5$ - Page 8-L-3/8-L-4, Figure 8-45.
Affected instruments: serial numbers 1748A04400 and below.
Instruments in this range may have an A14(A4) board which contains connectors J 1 ( $\mathrm{p} / \mathrm{n}$ 1251-4494) and J30 (p/n 1251-4390) for use with cables W32 (p/n 8120-2577) and W30 (p/n 8120-2576). The older (black) connectors and (white) cables have been replaced on newer boards by more reliable connectors J1 (orange - p/n 1251-6567) and J30 (orange - p/n 1251-5064), and cables W32 (gray - p/n 8120-3108) and W30 (gray - p/n 8120-3216). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. Should replacement of the

A14(A4) assembly in one of the above instruments become necessary, refer to paragraph 8 -113 in Section VIII for additional replacement information. Note that cable/connector changes for part nurnbers 1251-6567 and 8120-3108 occured beginning with instrument serial number 1748A04250.

### 7.47. Service Group M - Options: High Voltage Output (Opt.002) (03325-66508) and High Stability Reference (0pt. 001) (03325-66509) $\Delta 7$.

7-48. There have been no cngineering or manufacturing changes to the 03325-66508 or 03325-66509 assemblies.

### 7.49. Service Group N - Sweep Drive Circuits (P/0 03325-66514) $\Delta 5$.

7-50. A14-Past to Present. Table 7-14 briefly summarizes the engineering and manufacturing changes that have brought A14(A4) to its current revision.

Table 7.14. A14(A4) Board Revisions.

| Board Revision | Inttruments \$hipped With This Revision* | Board Changat |
| :---: | :---: | :---: |
| A4 - Rev $\mathrm{B}^{* *}$ | 1748A00101-1748A00190 | - |
| - Rev C | 1748A00191-1748A00470 | went Rev C following PC trace and manufacturing modifications. |
| - Rev D | 1748A00471-1748A01075 | went Rev D following manuf. changes and the addition of CR108, CR109, and R55. |
| - Rev E | 1748AO1076-1748A01900 | went Rev E following mod. to the relay driver and de offset control portion of A4. |
| A14-Rev A | 1748A01901-1748A08790 | went A14 Rev A when output amp (Sve. Grp. K) was redesigned. R142 was also added. |
| - Rev B | 1748A08791-1748A14537 | went Rev $B$ with changes to dc offset and amptd. control circuitry |
| - Rev C | 1748A 14538-Present | went Rev C following PC trace mod. to level comparator (U42) ckty. |
| * Note that all serial number ranges are approximate. <br> "* No A4 Rev A boards were ever produced. |  |  |

7-51. The following backdating information pertains to the sweep drive portion of A14(A4).
$\Delta$ - Page 8-N-3/8-N-4, Figure 8-48.
Affected instruments: serial numbers 1748A00470 and below.
For instruments in this range, R 6 is $20 \mathrm{k} \Omega$, part number $2100-0558$. If U5 is replaced in any of these instruments, it may be necessary to replace R 6 with part number $2100-3253$ ( $50 \mathrm{k} \Omega$ ) in order to perform the X -Drive adjustment.
$\Delta$ - Page $8-\mathrm{N}-3 / 8-\mathrm{N}-4$, Figure $8-48$.
Affected instruments: serial numbers 1748 A 01900 and below.
Instruments in this serial number range do not have Q4.
$\Delta 5$ - Page $8-\mathrm{N}-3 / 8-\mathrm{N}-4$, Figure $8-48$.
Affected instruments: serial numbers 1748A04250 and below.
These instruments may have an A14(A4) board which contains connector J1 ( $\mathrm{p} / \mathrm{n} 1251-4494$ ) for use with cable W32 (p/n 8120-2577). The older (black) connector and (white) cable have been replaced on newer boards by a more reliable connector (orange - $\mathrm{p} / \mathrm{n} 1251-6567$ ) and cable (gray - p/n 8120-3108). The newer connectors are incompatible with the older cables as are the newer cables incompatible with the older connectors. If the $\mathrm{A} 14(\mathrm{~A} 4)$ assembly is replaced in one of the above instruments, refer to paragraph 8-113 in Section VIII for additional replacement information.

## 7-52. Service Group D - Power Supplies (03325-66502) $\Delta 8$.

7-53. A2 - Past to Present. Table 7-15 briefly summarizes the engineering and manufacturing changes that have brought A 2 to its current revision.

Table 7-15. A2 Board Revisions.

| Board Revision | Instruments Shipped With This Revision* | Beard <br> Changas |
| :---: | :---: | :---: |
| A2-Rev A | 1748A00101-1748A00150 | - |
| - Rev B | 1748A00151-1748A01075 | went Rev B when PC trace modifications were made. |
| - Rev C | 1748A01076 - 1748A05825 | went Rev C with the addition of R34, R35, O8, and F2. |
| - Rev D | 1748A05826 - 1748A07339 | went Rev D when the relay current limiter circuitry of Q13 and 012 were added. |
| * Rev E | 1748A07340-1748A15073 | went Rev E following PC trace mod. to eliminate a potential shock hazard, See Service Note 3325A-11B-5. |
| $\sim$ Rev F | 1748A15074-Present | went Rev $F$ following mods, to widen PC trace spacings. |
| * Note that all serial number ranges ara approximate. |  |  |

7-54. The following backdating information pertains to the power supply assembly 03325-66502.
$\Delta 8$ - Page 8-O-3/8-O-4, Figure 8-49.
Affected instruments: serial numbers 1748A05825 and below.
Instruments in this range contain the fuse F2 shown in Figure 7.19 in place of the circuitry shown in Figure 8-49. See Service Note 3325A-12 for details and procedures for improving the reliability of the over-voltage protection circuitry.


Figure 7.19. Location Of F2 (Serial Numbers 1748A05825 to 1748A01076).
$\Delta 8$ - Page 8-O-3/8-O-4, Figure 8-49.
Affected instruments: serial numbers 1748A01075 and below.
Instruments in this serial number range do not have R35, R34, Q8, or F2. (See Figure 7-20.)


Figure 7-20. $\pm 15 \mathrm{~V}$ Regulator (Serial Numbers 1748A01075 and Below).
$\Delta 8$ - Page 8-O-3/8-O-4, Figure 8-49.
Affected instruments: serial numbers 1748A01200 and below.

Instruments in this range do not have R36. See Service Note 3325A-1B for details and procedures for a recommended modification to the over-voltage protection circuitry.

Affected instruments: Serial numbers 1748A07260 and below. Instruments in this ramge do not have CR18.
$\Delta 8$ - Page 8 -O-3/8-O-4, Figure 8-49.
Affected instruments: serial numbers 1748A07339 and below.
Note that for instruments in this serial number range, there is a potential electrical shock hazard present with the A2 board. A trace on the underside of A2 could pass within 0.5 mm of a folded edge of the instrument's floating sub-chassis. This trace carries one-half the line voltage in $220 \mathrm{~V} / 240 \mathrm{~V}$ applications. For $100 \mathrm{~V} / 120 \mathrm{~V}$ applications, this is a neutral trace. See Product Safety Service Note 3325A-11B-S for additional information and corrective procedures.

## WARNING

These servicing instructions are for use by trained service personnel only. To avoid electrical shock, do not perform any servicing other than that contained in the operating instructions unless you are qualified to do so.

## SECTION VIII SERVICE

## 8-1. INTRODUCTION.

8-2. This section contains information required to service the Model 3325A Synthesizer/Function Generator. This includes the theory of operation, block diagrams, troubleshooting procedures, and schematic diagrams. Most of the service information is divided into service groups, which are identified alphabetically. Each service group contains the schematic diagram, troubleshooting, and other pertinent information for a specific area of the instrument. A foldout functional block diagram follows Scrvice Group O. The following circuits are included in the service groups:

| Assembly | Circuit | Service Group |
| :---: | :---: | :---: |
| A21 | Voltage Controlled Oscillator | D |
| A21 | : N.F Counter | E |
| A2I | Fractional N Analog Circuits | F |
| A2 | Power Supplies | O |
| A3 | VCO Buffer | D |
| A3 | 30 MHz Reference and Dividers | G |
| A3 | Mixer | H |
| A14 | D/ $\Lambda$ Converter and Sample/ Hold | I |
| Al 14 | Function Circuits | , |
| A. 14 | Output Amplifier and Level Comparator | K |
| Al4 | Relay Drivers | L |
| Al4 | Sweep Drive Circuits | N |
| A5 | Keyboard and Display | A |
| A6 | HP-IB Citcuits | B |
| A6 | Control Circuits | C |
| A23 |  |  |
| or | Altenuator | L |
| A 7 |  |  |
| A8 | High Voltage Output Option 002 | M |
| A9 | High Stability Frequency Reference Option 001 | M |

Signature analysis information begins with paragraph 8-128.

## 8-3. BASIC THEORY.

8-4. A simplified block diagram of the 3325 A circuits is shown in Figure 8-1. In response to programming inputs from the Keyboard or the HP-IB, the Control circuits set the frequency, signal level, and output attenuation. The Frequency Synthesis circuits generate a sine wave at a frequency determined by digital information from the Control circuits. This sine wave is applied to the Function circuits where both the output function and signal level are determined, again by digital control. The signal level from the Output Amplifier can be tested in the Level Comparator to determine if a level correction is needed, thus providing an automatic amplitude calibration. If am-
plitude problems are encountered, it is important to disable this auto calibration. See section 8-102. Attenuator range is selected by the Control circuits to provide (in conjunction with Level Control) the desired output signal amplitude. Program parameter data stored in Control is transferred to the display when that parameter entry prefix key is pressed or the parameter prefix mnemonic is programmed on the HP-IB.

## 8-5. THEORY OF OPERATION.

8-6. The following theory is a general description of each of the circuit blocks in the 3325A. A foldout functional block diagram of the 3325 A follows Service Group O . Additional information on individual circuits may be found within the service groups. Figure $8-2$ is a basic block diagram of the logic circuits, which interface with the processor (and with cach other through the processor) to control the operation of the instrument. The Machine Data Bus, which consists of eight parallel lines labeled HMD0 through HMD7, is the principal means of data exchange between the control circuits and other parts of the instrument.

## 8-7. Keyboard and Display (Service Group A).

8-8. Keyboard Scan. Figure $8-3$ is a block diagram of the Keyboard and Display circuits. To determine if a key has been pressed, a single high bit is shifted into the first position of the 16-bit register, and the four-line output of the keyboard matrix is read onto the machine data bus by the Read Keyboard clock signal. The high bit is then shifted one position in the register and the keyboard matrix output is read again. This process is repeated through the twelve input lines to the matrix. The high input bit is inverted by the keyboard buffers. A low level on one of the four matrix output lines indicates that a key has been pressed, and the control circuits initiate the proper action. After a low level has been detected, the control circuits look for a high level from the same key before the same action can be repeated. In other words, if the 5 key has been pressed, only one 5 will be processed even though the key is held through more than one keyboard scan cycle.
8-9. Numeric Display. The same high bit that is shifted through the 16 -bit shift register to scan the keyboard enables one of the eleven numeric display digits in each of the first eleven positions of the register. When a digit is enabled, eight bits of data (parallel) from the Machine Data Bus are entered in the 8-bit latch by a Write Keyboard Display Data clock signal. Each low bit in this data enables one of the eight current sources, which supplies current to the proper segment (or decimal point) of the enabled digit.


Figure 8-1. Simplified Block Diagram.


Figure 8-2. Basic Block Diagram, Logic Circults.


Figure 8-3. Keyboard and Display Block Diagram.

8-10. Annunciator Matrix. In each of the last five positions of the 16 -bit shift register, the high bit that is being shifted through enables one of five sets of annunciators. Then another set of eight data bits is entered into the 8-bit latch. Each low bit in this data set also turns on one of the eight current sources, which supplies current to the proper annunciator.

8-11. Scan Cycle. Approximately 21 milliseconds are required for a complete scan of the Keyboard and Display. During each scan cycle, the events shown in Figure 8-3 happen concurrently.

## 8-12. HP-IB Circuits (Service Group B).

8-13. Data Input. Figure $8-4$ is a block diagram of the data input path. The low true data from the HP-IB DIO lines is inverted to high true in the Bus Receivers. It is then loaded into the last eight positions of the 12-bit parallel-in/serial-out shift register when the Load Data Input signal is low. The data loaded into the first four bits of this register is information concerning the ATN, REN,
and IFC management lines. Data is then shifted serially across the isolation barrier into an 8-bit serial-in/parallel-out shift register. The first four bits (status) are shifted across, gated into the tri-state buffer by the Read Bus Data signal, and onto the Machine Data Bus. After the control circuits have accepted this information, the eight bits of HP-IB data are transferred in the same manner.

8-14. Data Output. The output data path, shown in Figure 8-5, is essentially the reverse of the input data path. Parallel data from the Machine Data Bus is loaded into a parallel-in/serial-out shift register by the Write Bus Data signal. It is then shifted serially across the isolation barrier and into the same 12-bit shift register used for input data. However, for output data it is used as a serial-in/parallel-out register. The data is then loaded into an 8bit latch by the Load Data Out signal, where it is available to the Bus Drivers. When the Bus Drivers are enabled by the Data Out Enable signal, the data is inverted and placed on the HP-IB DIO lines. The eighth (most significant) data bit becomes the End or Identify


Figure 8-4. HP—IB Data Input Path.


Figure 8-5. HP-IB Data Output Path.


Flgure 8-6. HP-IB Management and Handshake.
(EOI) signal to the bus if the 3325A is addressed to talk and ATN is false.

8-15. Acceptor Handshake. The Listen circuits (shown near the upper center of Figure 8-6) enable the Acceptor Handshake block to operate if the 3325A is addressed to listen or if ATN (Attention) is true. When it is not addressed to listen but ATN is true, it accepts data in order to detect its listen or talk address or the untalk command. After the 3325A has been addressed to listen it accepts programming data when ATN is false and looks for its talk address or the unlisten command when ATN is true. When the HP-IB DAV (Data Valid) signal indicates that data is ready on the bus, the Acceptor Handshake circuits output New Data Ready, which becomes a Bus Interrupt signal to the processor. The Acceptor circuits also set NRFD (Not Ready For Data) to indicate to the bus that the 3325 A is in the process of accepting the data byte. After the byte has been accepted, the processor outputs a New Byte Accepted to the Acceptor circuits, which then resets the NDAC (Data Accepted) line to high.

8-16. Source Handshake. The Talk circuits enable the Source Handshake block only when the 3325A is addressed to talk and ATN is false. A New Byte Available signal from the processor tells Source Handshake to set DAV if NRFD is high indicating that all listeners are ready for data. After a byte of data has been accepted by
the listener(s), indicated by NDAC going high, the Acceptor circuits output a New Data Needed signal which becomes a Bus Interrupt to the processor.

8-17. Management Lines. The ATN (Attention), REN (Remote Enable), and IFC (Interface Clear) lines provide inputs to the 12 -bit shift register and are used as HP-IB status information inputs to the control circuits. A direct control output from the processor provides a Service Request ( SRQ ) signal to the HP-IB system controller.

## 8-18. Control Circuits (Service Group C).

8-19. The Control circuits include all the blocks in Figure 8-2 labeled Service Group C, plus other circuits such as Read and Write Control and the 1.2 MH 2 control clock oscillator. Figure $8-7$ is a basic block diagram of the Control circuits. A bricf definition of some circuit components may be helpful.

Processor: Commonly known as a microprocessor. As the name implies, this device processes its input information and determines what data and/or instructions to issue.

ROM: A Read Only Memory issues a predetermined set of data in response to a given set of input data, called an address.


RAM: A Random Access Memory, or Read/Write Memory, accepts data (data can be written into it) which can then be read out at a later time. Data location is determined by the address input.

8-20. Read Only Memory. The 3325A Read Only Memory (ROM) consists of four units, which are selected by signals from the ROM Control Register. Designed into the ROM are the fixed routines or responses required in the 3325 A operation. One of these routines, for example, reads the present output frequency data from the RAM and places it in the display when the FREQ entry key is pressed. The keyboard and display scan routines and test routines are also a part of the ROM information. A character received on the HP-IB is compared to ROM data to determine its validity and the appropriate action to be taken if the character is valid.

## 8-21. Random Access Memory. Variable or temporary

 information is stored in the Random Access Memory (RAM). This includes all program information from either the front panel or the HP-IB. Data stored at any RAM address can be changed by programming new data for the same parameter, function, or operation. RAMdata can be read out without destroying the data. For example, when the FREQ entry kcy is pressed, the present frequency data is entered in the display and is also retained in the RAM memory location.

8-22. Fractional $\mathbf{N}$ Control IC. The Fractional N Control IC (see Service Group E) performs several functions vital to control of the 3325A.
a. It calculates the $\div \mathrm{N}$ and Pulse Remove data for the phase lock loop in the Frequency Synthesis circuits. (Explanation of the 3325A frequency synthesis begins with Paragraph 8-24). This information is updated every 10 microseconds.
b. It increments or decrements the output frequency during a sweep function and outputs a Sweep Limit Flag when the start or stop frequency is reached. It also outputs a Sweep Limit Flag at the marker frequency during a sweep up.
c. Under control of algorithms performed by the processor, it performs arithmetic functions-for example, the arithmetic for conversion of amplitude in $V$ $\mathrm{p}-\mathrm{p}$ to V rms or dBm .


Figure 8-8. Phase Lock Loop.

8-23. Processor. The Processor coordinates the operation of all the other control logic circuits. Device select outputs from the processor are decoded into read, writc, and enable commands to various logic elements such as the RAM, control registers, and buffers. Direct Control input/output lines provide information to and from the HP--lB circuits. Interrupt capability allows the Processor to be interrupted by the HP--IB or by a Sweep limit Flag.

## 8-24. Frequency Synthesis.

8-25. The Frequency Synthesis cireuits are found in Service Group D, Voltage Controlled Oscillator; Service Group E, Fractional N Counter; and Service Group F, Fractional N Analog.

8-26. How does the 3325A generate a given frequency"? Assume that the output desired is an even 10 MHz . A method for obtaining this frequency is illustrated in Figure 8-8. Basically, the 3325A uses this method.

8-27. The frequency of the VCO (Voltage Controlled Oscillator), in Figure 8-8, is controlled by the de voltage out of the phase detector. This de voltage reflects any phase change between the two detector input signals. Consequently, if the VCO frequency changes, the phase detector output changes to correct the VCO. This is known as a phase lock loop (PLL).

8-28. If we want to change the output from 10 MHz to 20 MHz , it is necessary merely to change the $\div \mathrm{N}$ number from 400 to 500 . This obviously changes the divided VCO input to the phase detector to 80 kHz . The phase detector
then uses the phase difference between its two inputs to change the VCO frequency to 50 MHz . This returns the phase detector input to 100 kHz , and the loop is again phase locked. It takes the 3325A about 50 milliseconds to make this change. The $\div \mathrm{N}$ number is determined by control circuits in response to front panel or remote programming.

8-29. The 3325A sine wave frequency range is essentially from zero to 20 MHz ; consequently, the VCO frequency range is normally 30 MHz to 50 MHz . This dictates that the $\div \mathrm{N}$ number be a 3 -digit integer between 300 and 500 ( -N can be only three digits in the 3325 A ). For example, if $\div \mathrm{N}$ is 398 , the VCO frequency is adjusted to 39.8 M Hz ( $398 \times 100 \mathrm{kHz}$ ) and the output is 9.8 MHz .

8-30. Now let us look at a more detailed diagram of the phase detector block (Figure 8-9). The control voltage to the VCO is the output of a Sample/Hold amplifier which samples the integrator output at the proper time and at regular intervals. Ideally, this voltage would be exactly the same at each sampling time and the VCO frequency would remain constant. Let us assume that this is true, and that the $\div \mathrm{N}$ number is 400 . In this case, the output of the phase comparator would be a series of pulses of equal width, Each pulse turns on a current source which causes a given amount of charge to be placed on the integrator. At a specified time this voltage is stored on the Sample/Hold amplifier capacitor (Figure 8-9). The integrator output is illustrated in Figure 8-10. The charge slope is much greater than the discharge slope because the phase comparator current source has about ten times the magnitude of the bias current source.


Figure 8-9. Phase Detector.


Figure 8-10. Integrator Output.
8-31. Immediately after a sample, the bias current source is turned on to discharge the integrator capacitor to the level it held before the phase comparator current was allowed to charge it. If this were not done, the charge would continue to accumulate to the limit permitted by the power supplies and remain at that level (nullifying the entire PLL scheme). The bias current is controlled by a pulse from the fractional $N$ control IC.

8-32. Up to this point, we have considered only the situation where $\div \mathrm{N}$ is a whole number consisting of three digits. Now suppose an output of 10.04 MHz is desired. This would require the VCO frequency to be 40.04 MHz and the $\div \mathrm{N}$ number to be 400.4 . (The number 400.4 is referred to as $\div$ N.F. The number 400 is represented by N , and the fraction .4 may be called F , or the fractional N.) Since the existing phase lock system will not allow $\div \mathrm{N}$ to be four digits, some additional circuits are needed to make the VCO operate at a frequency of 40.04 MHz , and at the same time provide a signal to the phase
comparator equal to 100 kHz . Two of these circuits are the Digital-to-Analog (D/A) converter and pulse remove blocks added in Figure 8-11.

8 -33. If the VCO operated at 40.04 MHz and $\div \mathrm{N}$ were 400 , then the divided VCO signal to the phase comparator would be 100.1 kHz and would be compared to the 100.0 kHz reference. This would result in an increasing phase comparator charge current to the integrator. To compensate for this increased charge, the discharge current from the bias source is adjusted by means of Analog Phase Interpolation (API) information from the fractional N control IC. The phase (frequency) difference between 40.04 MHz and 40.00 MHz is accumulated digitally in the control IC and applied through five lines to a digital-to-analog converter. The D/A output current is subtracted from the bias current to discharge the integrator to the proper level during each sampling period, effectively cancelling the increased charge from the phase comparator.

8-34. Only part of the problem is solved, however, because if the PLL were to continue operating in this manner, the phase comparator output would continue to increase beyond practical limits. To prevent this, a "pulse remove" technique is used. In effect, the accumulated phase difference (in the Control IC) causes the $\div N$ counter to count one extra cycle ( $\div 401$ ) each time the phase accumulator passes through unity. This has the effect of "removing" a cycle of VCO frequency, and the divided signal to the phase comparator is now an average of 100 kHz .

8-35. To accumulate the phase difference, the twelve least significant digits in a "frequency register" (contained in the Fractional N control IC) are added to


Figure 8-11. Addition of D/A Converter and Pulse Remove Blocks.
the twelve digits in the phase accumulator, and the sum is stored again in the accumulator. This addition takes place every 10 microseconds (once for each cycle of the 100 kHz reference). Figure 8-12 illustrates this process for the example we are using.
$8-36$. This example has used a fractional N of .4. If the output frequency were 10.004 MHz instead of 10.04 MHz , the fractional part would be .04 , and both the phase comparator output and the phase accumulator content would increase at one-tenth the previous rate. As another example, if the output frequency were 10.09 MHz , the fractional N would be .9 , and a pulse remove command would be required for 9 out of every 10 reference cycles.

8-37. Fractional $N$ Counter. The $\div N$ (Fractional $N$ ) counter consists basically of three presettable counters in series, shown in Figure 8-13. The counters for the two most significant digits (of the 3-digit N number) are decade counters. The least significant digit counter consists of $\mathrm{a} \div 5$ counter and $\mathrm{a} \div 2$ prescaler which can be made to divide by three as necessary. Presettable counters are used because $\div \mathrm{N}$ must be variable, as explained below.

8-38. The preset number that is loaded into the counter in BCD (binary coded decimal) form is the 9 's complement of the N number. N is determined by the first three digits of the VCO frequency.

|  | Example 1 | Example 2 |
| :---: | :---: | :---: |
| Sine wave output | 10000000.0 Hz | 100000.0 Hz |
| Reference frequency | 30000000.0 Hz | 30000000.0 Hz |
| VCO frequency | 40000000.0 Hz | 30100000.0 Hz |
| $\div \mathrm{N}$ | 400 | 301 |

To determine the 9 's complement, $\div \mathrm{N}$ is subtracted from 999 in the fractional N control IC.

|  | 999 | 999 |
| :--- | :--- | :--- |
| $\div \mathrm{N}$ | $\underline{400}$ | 301 |
| 9 's complement | 599 | 698 |

8 -39. The $\div \mathrm{N}$ counter begins at the preset number ( 599 in example 1), counts to 999 and then reloads the same number unless a new frequency has been programmed. One output pulse occurs for each time the counters reach 999; consequently, if 400 VCO cycles ( 599 to 999 ) are counted for every output pulse, VCO has been divided by 400. The output pulse is derived from the bias pulse issued by the fractional N control IC. To provide the proper stable phase relationship to the VCO signal, this


Figure 8-12. Phase Accumulation.

pulse is clocked first by $\mathrm{VCO} \div 10$, then $\mathrm{VCO} \div 2$, and finally by VCO.

8-40. In example $2, \div \mathrm{N}$ is 301 , so the counter must count 301 VCO cycles during each reference period. Normally only an even number of cycles could be counted because the least significant digit $\div 5$ counter is counting VCO $\div 2$ from the prescaler. Therefore, in order to count an odd number, the prescaler is forced to count one additional pulse during each reference period. To accomplish this, the pulse remove circuits are enabled when the least significant (BCD) bit of the least significant digit of the preset number is even, as is the case in example 2 (decimal $8=$ binary 1000). Then the negative-going pulse from the preload one-shot changes the prescaler to $\div 3$ for one cycle. The pulse remove action associated with fractional N is independent of and in addition to the odd number count.

8-41. The chip clock counter output (Figure 8-13) is the prescaler output divided by five. The $\bar{Q}$ output from this counter goes to the fractional N control IC and is used to clock data in and out of the four shift registers within the IC. The counter $Q$ output is used in the $\div$ N.F counter output synchronization and to clock the cycle start flipflop.

8-42. The cycle start flip-flop is set by the $\overline{\mathrm{Q}}$ output from the preload flip-flop and is cleared by the next trailing edge of the chip clock signal. A cycle start pulse occurs at the time the $\div \mathrm{N}$ least significant digit is preloaded, which is once every reference period. Cycle start is used to initiate operations within the fractional N control IC. It is also used to set the pulse remove circuit when $\div \mathrm{N}$ is an odd number.

## 8-43. Reference Circuits (Service Group G).

8-44. Reference Oscillator. The Reference Oscillator is a 30 MHz crystal-controlled oscillator that can be
synchronized to an external reference signal of 10 MHz or subharmonic of 10 MHz (minimum 1 MHz ).

8-45. External Reference Phase Lock Loop. Figure 8-14 is a block diagram of the External Reference Phase Lock Loop. The external reference input is sent thorugh a squaring circuit, amplified, and then differentiated to provide a narrow positive pulse to the gate of a FET switch. This turns the switch on momentarily, sampling the instantaneous voltage of the sine wave at the FET switch source. This voltage is stored on the capacitor at the input of a Sample/Hold amplifier. The resulting dc output voltage from the $\mathrm{S} / \mathrm{H}$ amplifier is applied to a varactor in the 30 MHz oscillator circuit to adjust the oscillator frequency.
$8-46$. When the 30 MHz oscillator is in phase with the external reference, the FET switch will sample the sine wave at exactly the same point each time and the $\mathrm{S} / \mathrm{H}$ amplifier output voltage will remain constant. But if there is a change in phase relationship, the amplifier output voltage will change, correcting the oscillator frequency and restoring phase lock.

8-47. External Reference Detector. Whenever an external reference input is present, a detector circuit provides a logical " 1 " signal to the control circuits. This causes the front panel EXT REF indicator to light.

8-48. Unlock Detector. When the external reference loop is phase locked, the Sample/Hold amplifier output is a steady dc voltage. However, if the loop is not locked, this voltage will vary. The unlock detector is triggered by this varying voltage to provide a logical " 1 " to the control circuits. During an "unlock" condition, the front panel EXT REF indicator will flash on and off.

8-49. 30 MHz Reference Amplitude. Sine wave output amplitude and amplitude modulation are controlled by varying the amplitude of the 30 MHz Reference. Figure


Figure 8-14. External Reference Phase Lock Loop


Figure 8-15. Level Control and Amplitude

## Modulation.

8 -15 is a simplified diagram of the level control and amplitude modulation circuits. The reference signal amplitude is varied by controlling the current available from the current source (Figure 8-15), which in turn is controlled by the \$ine Amplitude signal and/or the Amplitude Modulation input signal. When the AM Control switch is OFF, the X input to the voltage multiplier is constant, and the output level is controlled by the Sine Amplitude only. When the AM switch is ON , however, both the X and Y inputs influence the output. The output of the multiplier ( $\mathrm{V}_{\mathrm{o}}$ ) is normally equal to . 1 XY , but because the multiplier output is connected to an operational amplifier input, this voltage cannot be measured. Use of the voltage multiplier in this circuit makes it possible to change the 3325A output (carrier) amplitude without affecting the percent of modulation, or to change the percent of modulation without affecting the carrier level. The output of the Level Control and Amplitude Modulation circuit goes to the Mixer, covered in Service Group H.

8-50. Reference Dividers. The 30 MHz Reference frequency is reduced through a series of dividers to provide the following signals:

> 10 MHz to the External Reference PLL
> 2 MHz to the D/A Converter (Service Group I)
> 1 MHz rear pancl reference output
> 100 kHz reference to the Fractional N Phase Comparator (Service Group F)

For phase stability, the 100 kHz output is clocked first by 10 MHz , then by the 30 MHz reference signal. The 100 kHz signal is then differentiated to provide a narrow pulse to the Fractional N Phase Comparator.

## 8-51. Mixer (Service Group H).

8-52. The Mixer circuits are diagrammed in Figure 8-16. The 30 MHz reference is passed through a low pass filter and mixed with the $30-50 \mathrm{MHz}$ signal from the VCO in a diode mixing circuit. The mixing circuit output is applied to a low pass filter to remove all but the difference frequency, which is amplified by a current amplifier. This signal then goes to the Function circuits (Paragraph 8-59).

## 8-53. D/A Converter (Service Group I).

8-54. The Digital-to-Analog (D/A) Converter supplies the analog voltages which control signal amplitude, dc offset, level comparator reference voltage, sweep $X$ drive output, and correct for de offset error. In addition, it supplies an auto zero voltage to its own current sources.

8-55. Preset Counters. Each of the four Preset Counters is a BCD counter that can be pre-loaded with a 4 -digit binary number and then enabled to count from that point. In this application, they are set to count down. The counters are connected in two pairs, as illustrated by the least significant pair in Figure 8-17. Both counters are loaded at the same time, then the Least Significant Digit (LSD) Counter is enabled by the Counter and Current Source Enable Flip-Flop; and at the same time, the LSD Current Source is enabled to supply current to the DAC Integrator (see Figure 8-18). When the LSD Counter reaches zero, its Ripple Clock output enables the 3rd Digit Counter to count one clock pulse. If the preset number in the 3rd Digit Counter was greater than one, the LSD Counter continues to count, supplying an enable pulse to the 3rd Digit Counter each time it reaches zero. When the 3rd Digit Counter reaches zero, its Ripple Clock output changes the state of the Counter and Current Source flip-flop, disabling the LSD Counter and the Current Source.


Figure 8-16. Mixer Diagram.


Figure 8-17. Preset Counters.


Figure 8-18. D/A Converter.

S/H STROBE


Figure 8-19. DAC Sample/Hold.

8-56. 4-Digit D/A Conversion. A simplified diagram of the D/A Converter is shown in Figure 8-18. The D/A Converter (DAC) Integrator output voltage is proportional to the four digits of BCD information that is loaded into the Preset Counters. The two current sources are enabled to supply constant current to the DAC Integrator for the length of time required for the Preset Counters to count down from the preset number to zero. The current resulting from the two most significant digits is proportionally 100 times that from the two least significant digits. For example, if the 4 -digit preset number were 5555, the enable time would be the same for both current sources, but the current ratio would be 100 to 1 .

8-57. DAC Sample/Hold Circuits. After the Preset Counters have finished counting and the current sources are disabled, the DAC Integrator output voltage must be transferred to the proper Sample/Hold Amplifier. Figure $8-19$ is a simplified diagram of the DAC Sample/Hold circuits. The data that designates one of the six Sample/Hold Amplifiers is clocked into the latch by the S/H Strobe pulse. The S/H Strobe pulse also triggers a switch timing one-shot which enables the switches to close long enough to transfer the DAC Integrator voltage to the capacitor at the input to the $\mathrm{S} / \mathrm{H}$ Amplifier.

8-58. DAC Reset. After the integrator output voltage has been transferred to the proper Sample/Hold Amplifier, the integrator is reset to zero by closing a FET switch across the integrator capacitor. The closing of this switch is timed by a one-shot which is triggered by the S/H Strobe pulse.

## 8-59. Function Circuits (Service Group J).

8-60. This section of the instrument provides the proper current to the operational output amplifier for each function. It includes a number of current sources, and the circuits which develop the square wave, triangle, and ramp functions from the sine wave. Function switching is accomplished by the enable signals shown in the block diagram, Figure 8-20.

8-61. Sine Wave. In sine function, the sine wave from the mixer passes through a current amplifier to the output amplifier. Sine wave amplitude is actually controlled in the level control circuit (see Paragraph 8-69), but the level control current is supplied from the amplitude control current source in this section.

8-62. Square Wave. The sine wave input is sent through a squaring circuit and then divided by two to produce the square wave output. Consequently, in the square wave function, the sine wave must be twice the output frequency, and the maximum output frequency is 10 MHz .

8-63. Triangle. To generate a triangle wave, the sine wave input is first put through the squaring circuit, then
divided by $20(\div 10$ and $\div 2)$. The result is a square wave whose frequency is 1 MHz plus the programmed output frequency. This signal is phase compared to a 1 MHz reference in an exclusive OR gate. Because the output of the gate is high when one and only one input is high, the gate output is a series of pulses whose width varies in proportion to the phase difference between the two gate input signals. Figure $8-21$ is a simplified illustration of this. The gate output drives a current amplifier (which inverts the signal) and the resulting current pulse signal is sent through a filter which shapes the triangle.

8-64. The triangle output frequency is the difference between the 1 MHz reference and the input frequency (from the mixer) divided by twenty. Consequently, the input frequency must be $20 \mathrm{MHz}+$ ( 20 x output). To produce the maximum triangle output frequency of 10 kHz , for example, the input must be 20.2 MHz .

| Output frequency <br> Reference | $=$ $=$ | $\begin{array}{r} 10000 \mathrm{~Hz} \\ 1000000 \mathrm{~Hz} \\ \hline \end{array}$ |
| :---: | :---: | :---: |
|  |  | 1010000 Hz |
|  | $\times$ | 20 |
| Input frequency | $=$ | 20200000 Hz |

8-65. Positive and Negative Ramp. A ramp output is generated in the same manner as the triangle, except that when the phase difference between the 1 MHz reference and the input $\div 20$ has advanced $180^{\circ}$, the reference is inverted by the ramp reset circuits (Figure 8-20). Figure 8-22 illustrates the ramp generation process. Because the phase difference is allowed to advance only $180^{\circ}$ instead of $360^{\circ}$ as in triangle generation, the frequency of the "input $\div 20$ " signal to the phase comparison gate must be 1 MHz plus one-half the output frequency. For the maximum ramp output frequency of 10 kHz :

| Output frequency | $=$ | 10000 Hz |
| :--- | :--- | ---: |
| $\div 2$ | $=$ | 5000 Hz |
| Reference | $=$ | $\underline{100000 \mathrm{~Hz}}$ |
|  | $\times$ | $\frac{1005000 \mathrm{~Hz}}{20}$ |
|  |  |  |
| Input frequency | $=$ | 20100000 Hz |

8-66. Ramp reset may be initiated either by the phase detector output (Figure 8-20) or by a + or - ramp reset signal from peak detectors at the output amplifier. Each reset pulse causes the reference signal to be inverted at the output of the ramp reset gate.



Cricy


$$
\text { Fig } 8-70 \text { sit } 3 \text { of } 3
$$



Figure 8-20. Enable Signals for Function Switching


Figure 8-21. Simpliffed Illustration of Triangle Generation.


Figure 8-22. Simplified Illustration of Ramp Generation.

8-67. Ramp polarity is determined by the ramp polarity gate. If negative ramp is programmed, the reference signal is inverted by this gate.

8-68. Function Integrity Flag. If the ramp is being reset by the digital Phase Detector, the detector output sets the Function Integrity Flip-Flop, and the Function Integrity Flag (HMD2) to the processor is high. If the ramp is being reset by the analog Level Comparator at the amplifier output (see Paragraph 8-74), the analog reset signal prevents the Function Integrity Flip-Flop from being set. The controller may reset the Function Integrity Flip-Flop. The Function Integrity Flag tells the processor which ramp reset method (analog or digital) is being used. This information is used by the processor in setting the correct reference level for the output Level

Comparator. Ramps are reset by the digital Phase Detector at frequencies below 100 Hz , and by the analog output Level Comparator at frequencies of 100 Hz and higher.

8-69. Amplitude and Offset Control. The voitage output of the output amplifier is proportional to the current into its input summing junction. Consequently, signal amplitude can be controlled by varying the amount of current available from the current source which supplies the various functions. The amplitude control signal is a de analog voltage from a D: A converter (see Paragraph 8-53) which receives its digital input from the controller.

8-70. Because the square wave, triangle, and ramp signals are generated by switching the unipolar amplitude
control current source on and off, the entire signal is above ground. These signals are centered about ground by a compensating current equal to one-half the signal amplitude. This current is shown as "amplitude $\div 2$ correction current" in Figure 8-20.

8-71. Positive or negative de offset can be programmed either with or without an ac signal. The offset current source is also controlled by a de analog voltage from the D/A converter. The de offset correction current source is also controlled by the D/A converter. The offset correction voltage is calculated from the results of the AMPTD CAL routine (see Paragraph 8-74).

## 8-72. Output Amplifier (Service Group K).

8-73. The Output Amplifier is an inverting operational amplifier that is designed for wide frequency response and low distortion. Its output stage is protected against excessive current by a 0.125 A fuse and against excessive voltage by diodes connected to the + and -15 V supplies. Output resistance is 50 ohms.

8-74. Level Comparator and AMPTD CAL. During the amplitude calibration process (AMPTD CAL), the Level Comparator is used to determine the offset and signal amplitude errors of the 3325A output. To do this, the processor sets the signal amplitude to zero and varies the voltage of the "Level" input to the comparator to determine the de offset in the amplifier output. The processor computes the de offset error and programs an offset correction. The processor then sets the signal amplitude to 8 V p-p (with full attenuation) and procecds to determine both the positive and negative peak voltages in a similar manner. From this information it computes the gain error, which is used for subsequent amplitude calculations for any range selected. This error information is retained and used by the processor until the next amplitude calibration, which may occur because of the change in the function programmed, or because the operator or HP-IB system controller programmed AMPTD CAL.

8-75. The Level Comparator is also used to reset both the positive and negative-going ramps for frequencies of 100 Hz and higher. The "Level" voltage is set by the processor to the peak ramp voltage programmed. When the ramp and "Level" voltages are equal, a Ramp Reset pulse is gencrated by a one-shot and used to toggle a Ramp Reset flip-flop (see schematic in Service Group J). The ramp is then reset as explained in Paragraph 8-65. If the "Level" voltage is set incorrectly, the digital phase detector causes the ramp to be reset, and the Function Integrity Flag to the processor to be high (see Paragraph 8-68). The processor then adjusts the "Level" voltage until the Level Comparator output resets the Function Integrity Flag, indicating that the ramp is being reset by the Level Comparator. This ramp "loop level" process is disabled when the frequency is being swept or modulation is cnabled.

8-76. Sync Comparator and Driver. The amplifier output waveform is one input to the Sync Comparator and the other input is the DC Offset voltage level. If no de offset has been programmed, the DC Offset voltage is zero and the comparator output changes at zero volts. This results in a Sync square wave whose transition occurs at zero volts crossing of the output signal. It follows, then, that the Sync signal transition oceurs whenever the output signal crosses the DC Offset voltage, when an offset has been programmed. The Sync signal is the passed through inverter circuits to both the front and rear panels.

## 8-77. Attenuator (Service Group L).

8-78. Relay Drivers. Refer to the schematic diagram in Service Group L. Relay selection data is provided by the lines labeled K0 through K7 and is stored in the D flipflops of A14U49. This information is obtained from the Machine Data Bus through A14U29 (see Service Group I). Seven of the relay driver circuits are contained in one integrated circuit package, and the eighth is a discrete transistor circuit. Current through the relay coils is limited by the Q77, Q78 circuit. Because latching relays are used, continuous current is not required. Therefore, after a relay has been switched, the driver can be turned off by the K0-K7 information. The D flip-flops are clocked at the proper time by a signal that is also decoded in A14U27 from the Machine Bus data.

8-79. Attenuator Relays and Pads. Relays K1, K2, and K3 control the output signal attenuation. Table 8-1 shows the voltage ranges, both with and without de offset and the relays and attenuation factors involved. The output relay, K4, switches the output to the front or rear panel in a standard instrument and switches the High Voltage amplifier in or out in Option 002 instruments.

## 8-80. High Voltage Output Option 002 (Service Group M).

8-81. The High Voltage Output Amplifier is noninverting and has a gain of two. It is designed for operation over a band width of 0 to 1 MHz . The output is current-protected by a 0.25 A fuse, and voltage-protected by diodes to the + and -30 V supplies. Output resistance is essentially zero. Plus and minus 30 V regulators which supply power for this amplifier are a part of the option. Input power for these supplies is provided from a separate winding on the instrument power transformer; consequently, these supplies are on at any time ac power is connected to the instrument.

## 8-82. Sweep Drive Circuits (Service Group N).

8-83. The Sweep Drive Circuits provide three output signals that can be used in oscilloscope, plotter, and similar applications: Z Blank, Marker, and X Drive.

8-84. Z Blank. The Z Blank output voltage levels are TTL compatible. This signal goes low at the start of a

Table 8-1. Attenuation and Voltage Ranges.

| Range | Attenuation Factor | Attenuator Relay In | Amplitude (Peak-to-Peak, 50 n ) |  | $\begin{gathered} \text { Maximum } \\ \text { Offget } \\ (+ \text { or }-1 \\ \hline \end{gathered}$ | Minimum Offset$(+ \text { or }-\}$ | $\begin{gathered} \text { DC } \\ \text { Only } \\ 1+\text { or }- \text { ) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | AC Only ( No Offset) | AC (With Offset) |  |  |  |
| 1 | 1 | None | $\begin{gathered} 10.00 \mathrm{~V} \\ \text { to } \\ 3.000 \mathrm{~V} \end{gathered}$ | $\begin{gathered} 9.998 \mathrm{~V} \\ \text { to } \\ 1.000 \mathrm{~V} \end{gathered}$ | $\begin{gathered} 0.001 \mathrm{~V} \\ \text { to } \\ 4.500 \mathrm{~V} \end{gathered}$ | 1.000 mV | $\begin{gathered} 4.500 \mathrm{~V} \\ \text { to } \\ 1.500 \mathrm{~V} \end{gathered}$ |
| 2 | 3 | K3 | $\begin{gathered} 2.999 \mathrm{~V} \\ \text { to } \\ 1.000 \mathrm{~V} \end{gathered}$ | $\begin{aligned} & 999.9 \mathrm{mV} \\ & \text { to } \\ & 333.4 \mathrm{mV} \end{aligned}$ | $\begin{gathered} 1.166 \mathrm{~V} \\ \text { to } \\ 1.499 \mathrm{~V} \\ \hline \end{gathered}$ | 0.100 mV | $\begin{gathered} 1.499 \mathrm{~V} \\ \text { to } \\ 0.500 \mathrm{~V} \\ \hline \end{gathered}$ |
| 3 | 10 | K2 | $\begin{aligned} & 999.9 \mathrm{mV} \\ & \text { to } \\ & 300.0 \mathrm{mV} \end{aligned}$ | $\begin{gathered} 333.3 \mathrm{mV} \\ \text { to } \\ 100.0 \mathrm{mV} \end{gathered}$ | $\begin{gathered} 333.3 \mathrm{mV} \\ \text { to } \\ 450.0 \mathrm{mV} \end{gathered}$ | 0.100 mV | $\begin{gathered} 499.9 \mathrm{mV} \\ \text { to } \\ 150.0 \mathrm{mV} \end{gathered}$ |
| 4 | 30 | K2, K3 | $\begin{gathered} 299.9 \mathrm{mV} \\ \text { to } \\ 100.0 \mathrm{mV} \end{gathered}$ | $\begin{aligned} & 99.99 \mathrm{mV} \\ & \text { to } \\ & 33.34 \mathrm{mV} \end{aligned}$ | $\begin{gathered} 116.6 \mathrm{mV} \\ \text { to } \\ 149.9 \mathrm{mV} \end{gathered}$ | 0.010 mV | $\begin{aligned} & 149.9 \mathrm{mV} \\ & \text { to } \\ & 50.00 \mathrm{mV} \end{aligned}$ |
| 5 | 100 | K1 | $\begin{gathered} 99.99 \mathrm{mV} \\ \text { to } \\ 30.00 \mathrm{mV} \end{gathered}$ | $\begin{aligned} & 33.33 \mathrm{mV} \\ & \text { to } \\ & 10.00 \mathrm{mV} \end{aligned}$ | $\begin{gathered} 33.33 \mathrm{mV} \\ \text { to } \\ 45.00 \mathrm{mV} \end{gathered}$ | 0.010 mV | $\begin{aligned} & 49.99 \mathrm{mV} \\ & \text { to } \\ & 15.00 \mathrm{mV} \end{aligned}$ |
| 6 | 300 | K1, K3 | $\begin{gathered} 29.99 \mathrm{mV} \\ \text { to } \\ 10.00 \mathrm{mV} \end{gathered}$ | $\begin{gathered} 9.999 \mathrm{mV} \\ \text { to } \\ 3.334 \mathrm{mV} \end{gathered}$ | $\begin{gathered} 11.66 \mathrm{mV} \\ \text { to } \\ 14.99 \mathrm{mV} \\ \hline \end{gathered}$ | 0.001 mV | $\begin{gathered} 14.99 \mathrm{mV} \\ \text { to } \\ 5.000 \mathrm{mV} \\ \hline \end{gathered}$ |
| 7 | 1000 | K1, K2 | $\begin{aligned} & 9.999 \mathrm{mV} \\ & \text { to } \\ & 3.000 \mathrm{mV} \end{aligned}$ | $\begin{gathered} 3.333 \mathrm{mV} \\ \text { to } \\ 1.000 \mathrm{mV} \end{gathered}$ | $\begin{gathered} 3.333 \mathrm{mV} \\ \text { to } \\ 4.500 \mathrm{mV} \end{gathered}$ | 0.001 mV | $\begin{aligned} & 4.999 \mathrm{mV} \\ & \text { to } \\ & 1.500 \mathrm{mV} \\ & \hline \end{aligned}$ |
| 8 | 3000 | K1, K2, K3 | $\begin{gathered} 2.999 \mathrm{mV} \\ t 0 \\ 1.000 \mathrm{mV} \end{gathered}$ |  |  |  | $\begin{gathered} 1.499 \mathrm{mV} \\ \text { to } \\ 0.001 \mathrm{mV} \end{gathered}$ |



Figure 8-23. Marker and X Drive Start-Stop Flip-
linear or $\log$ single sweep, high at the end of the sweep, and remains high until the start of another sweep. For continuous sweep, Z Blank is low during sweep up and high during sweep down. The Z Blank output circuit is capable of sinking current through a relay or other device. The maximum ratings are:

Maximum current sink: 200 mA , fused at .25 A Allowable voltage range: 0 V to +45 V dc Maximum power (voltage at output $x$ current): 1 W

8-85. Marker Output. A Marker output pulse occurs only during linear sweep up, either single or continuous sweep. The NAND gate flip-flop that produces this output is shown in Figure 8-23. The output is high at the start of a sweep up, then the Sweep Limit Flag input goes low at the Marker frequency, changing the flip-flop output to low. Immediately following a sweep up, the Marker Reset input goes low, resetting the flip-flop output to high,

8-86. X Drive. The output of the X Drive Start/Stop flip-flop (Figure 8-24) is set high by the low true Start signal and is returned to low by the Sweep Limit Flag pulse that occurs at the end of the sweep. The Start signal remains low until just before the end of sweep to prevent the Sweep Limit Flag pulse that sets the Marker flipmflop from also changing the $X$ Drive flip-flop. The marker frequency and stop frequency points must be separated by approximately 400 microseconds to allow time
between the two Sweep Limit Flags for the control circuits and Fractional N IC to return the Start signal to high and process the information for the stop frequency.

8-87. The high output from the Start/Stop flip-flop is used to turn on one of two analog switches, depending upon which Range signal is high. Range 1 is high for sweep times of 0.01 second to 0.999 second, and Range 2 is high for times of 1 second to 99.99 seconds. As illustrated in Figure 8-24, each analog switch turns on a switch for the duration of the sweep, providing current to an integrator whose output is the X Drive ramp. The value of the current to the integrator depends upon the X Drive analog voltage and the resistance in the integrator input circuit. The resistances are fixed at 10 kilohms for Range 1 and 1 megohm for Range 2. The value of the $X$ Drive voltage is supplied from the D/A Converter and Sample/Hold circuits (see Paragraph 8-53) and is calculated by the control circuits to provide the proper current to increase the X Drive Output Ramp from 0 V to +10 V during the sweep time selected.

8-88. Following a single sweep, the X Drive ramp remains essentially at +10 V until reset prior to the start of another sweep. (This voltage will drift downward less than $10 \mathrm{mV} / \mathrm{sec}$.) During continuous sweep, the ramp is reset at the start of sweep down. The reset switch is a FET connected across the integrator capacitor. The Ramp Reset pulse is initiated at the proper time by the control circuits.


Figure 8-24. X Drive Ramp Output.

## 8-89. Crystal Oven Option 001 (Service Group M).

8-90. AC power for the Crystal Oven is supplied by a separate winding on the instrument power transformer. Consequently, power is supplied to this assembly at any time ac power is applied to the instrument. $\mathrm{A}+15 \mathrm{~V}$ regulator provides de power to the Crystal Oven. The oven output frequency is 10 MHz . It is capacitively coupled to the rear panel output connector.

## 8-91, Power Supplies (Service Group O).

8-92. All three regulators, $+5 \mathrm{~V},+15 \mathrm{~V}$, and -15 V (shown in the schematic diagram in Service Group 0) are voltage and current controlled. Each regulator has a voltage sense connection. If the voltage at the load is too low, for example, this sense voltage feedback causes the regulator to adjust its output to the correct voltage. If the output current increases excessively (because of a short circuit, for example) the voltage drop across the current sensing resistance causes the active device in the current sensing circuit to limit the current through the series pass regulator.

8-93. When the front panel POWER switch is in the STBY (standby) position, the three main power supply regulators are disabled. However, power is still applied to the HP-IB input/output circuits, the Oven Assembly (Option 001), and the High Voltage Output Amplifier (Option 002). These circuits have their own regulators, which are active at any time ac power is connected to the instrument.

8-94. When the POWER switch is in the STBY position, as shown in the simplified schematic of Figure 8-25, a positive voltage is applied through K 1 relay coil to the emitter of Q11, biasing this transistor into conduction. The current is limited by resistors R30 and R32 so that the relay is not activated. Q4 is biased on by the current through Q11 to the point where it behaves in the same manner as it would if there was excessive current through the sensing resistor, R4. This causes the series pass regulator, Q 2 , to be turned off, disabling the -15 V regulator. Because the +5 V and +15 V regulators are referenced to the -15 V supply, they are also disabled.

8-95. When the POWER switch is set to ON, the emitter of Q11 is grounded, turning this transistor off. Consequently it has no effect on the -15 V regulator circuits. Relay KI is activated, turning on the blower.

8-96. An overvoltage protection circuit in the +5 V supply prevents the voltage from becoming high enough to damage the TTL devices in the instrument. This circuit consists of an SCR (A2CR10) which is triggered if the voltage across A2R14 becomes too great. (Refer to the Power Supply schematic, Service Group O.) When the SCR is triggered, it becomes a short circuit between the unregulated +5 V and ground. The result is that the +5 V regulator is disabled and the power input fuse, Fl , will be destroyed.

8-97. The only voltage adjustment is A2R22 in the -15 V regulator. This control adjusts the +5 V and +15 V outputs also because they are referenced to the -15 V supply.


Figure 8-25. Power Supply Standby/On Circult.

### 8.98. SINE AMPLITUDE CONTROL PATH.

### 8.99. Amplitude Control Circuitry.

8-100. The control of sine output amplitude involves a large amount of circuitry. The circuitry used is shown in Figure 8-26. Each block in this figure indicates the circuit board and schematic appropriate to that function. The process begins with the processor loading a number into the preset counters. For the length of time that it takes for these counters to count to zero, a current source is on and is charging up an integrator in the DAC. When the current source turns off, the integrator voltage is sampled and held. This D.C. voltage goes through a gain stage and a multiplier chip and establishes the bias on the 30 MHz switch. This controls the level of the 30 MHz reference signal to the mixer. From the mixer, a $0-20 \mathrm{MHz}$ signal is supplied to the function circuits, the output amplifier, the attenuator, and on to the instrument output. Through all these stages the signal's amplitude is controlled by the D.C. voltage to the 30 MHz switch.

8-101. As seen in Figure 8-26, there exists a feedback path through the processor. Using a peak detector, the processor is able to sample the D.C. offsets and amplitude of the signal at the output of the Output Amplifier and compensate for errors by loading adjusted numbers into the Preset Counters.

### 8.102. Auto Calibration Disable (ACD).

8-103. When servicing the amplitude control path, it is imperative that the feedback path be eliminated before troubleshooting begins. This is performed by tying the ACD test point (on A14) to ground. This breaks the loop by preventing the processor from performing subsequent Auto Calibrations. After tying $A C D$ to ground, cycle power off, then on, to erase from RAM all previous Auto Ca information.


Figure 8-26. Sine Amplitude Control Path.

## 8-104. SERVICING INFORMATION.

### 8.105. Power Line Voltage Selection.

8-106. Instructions for setting your instrument to the proper power line voltage are contained in Paragraph 2-8 and Figure 2-1.

## 8-107, Fan Filter.

8-108. The fan filter must be inspected frequently and cleaned or replaced as necessary to permit the free flow of air through the instrument. To clean the filter, remove the four nuts that secure the filter retainer, remove the filter and flush with soapy water, rinse clean, and air dry.

## 8-109. Adapter Cable.

8-110. An adapter cable may be made as shown in Figure 8-27 that will aid in adjusting and troubleshooting the instrument. This cable has a phone plug at one end to connect to the phono jacks used as signal connectors on the printed circuit board. The BNC connector at the other end connects to the input of an oscilloscope or other test equipment.

## 8-111. Access to Reverse Side of A21, A3, A14, and A6.

8-112. The square slotted fasteners used to secure one edge of printed circuit assemblies A21, A3, A14, and A6 can be used to support the board in a vertical position,

Table 8-2. Assembly/Cable Compatibility for Serial Numbers 1748A04250 and Below.

| Assembly To Be Replaced | Affected Destination Assembly(ies) | Cable/ <br> Conneptor | Part Numbers For Destination Assy Modification |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} A 6 \\ 03325-66506 \end{gathered}$ | A3 <br> * All Rev A and Rev B Boards <br> A14 (A4) <br> * All A4 Revisions and A14 Rev A <br> A21 (A1) <br> * All A1 Revisions and A21 Rev A | W33/A3J1 <br> W32/A14.J1 <br> W31/A21J1 | $8120-3108(\mathrm{Cbl})^{* *}$ <br> 1251-6567 (Сопп) <br> $8120-3108(\mathrm{CbI})^{* *}$ <br> 1251-6567 (Сопп) <br> $8120-3108$ (Cbl)** <br> 1251-6567 (Сопп) |
| $\begin{gathered} A 14\{A 4\rangle \\ 03325-66514(04) \end{gathered}$ | A6 <br> * All Rev A, Rev B and some Rev C <br> A23 (A7) <br> * All A7 Revisions and $A 23$ RevA/RevB | W32/A6J2 <br> W30/A23J30 | 8120-3108 (Cbl)** <br> 1251-8567 (Conn) <br> $8120-3216$ (Cb)** <br> 1251-5064 (Сопп) |
| $\begin{gathered} \text { A3 } \\ 03325-66503 \end{gathered}$ | A 6 <br> * All Rev A, Rev B and some Rev C | W33/AB.3 | $\begin{aligned} & 8120-3108(\mathrm{Cbl})^{* *} \\ & 1251-6567 \text { (Conn) } \end{aligned}$ |
| $\begin{gathered} \mathrm{A} 21(\mathrm{~A} 1) \\ 03325-66521(\mathrm{O} 1) \end{gathered}$ | A6 <br> * All Rev A, Rev B and some Rev C | W31/A6.J4 | $\begin{aligned} & 8120-3108(\mathrm{Cbl})^{* *} \\ & 1251-6567 \text { (Conn) } \end{aligned}$ |
| $\begin{gathered} A 23(A 7) \\ 03325-66523(07) \end{gathered}$ | A14 (A4) <br> * All A4 Revisions and A14 Rev A | W30/A14.330 | $\begin{aligned} & 8120-3216 \text { (Cbl)** } \\ & 1251-5064 \text { (Conn) } \end{aligned}$ |

[^14]permitting access to both sides of the assembly for servicing. All cables may be left in place and the instrument may be operated with a board in the vertical position. After releasing the printed circuit board by removing all screws, screw the square fasteners back into their threaded standoffs, and insert the edge of the board into the slots in the fasteners, as shown in Figure 8-28(a). The -hp-part number of the fastener is 0570-0621. Newer 3325 s may not have these standoffs installed.


Make sure that the fasteners do not contact any circuitry other than the ground plane.

### 8.113. A6, A14, A3, A21, A23 Connector Compatibility.

8-114. 3325A's with serial number 1748A04250 or below* contain PC assemblies with certain cables and connectors which are not compatible with later revision boards. When replacing $\mathrm{A} 6, \mathrm{~A} 14, \mathrm{~A} 3, \mathrm{~A} 21$, or A 23 in a 3325A. in the range identified above, the connector(s) on the older destination assembly must be changed in order to be compatible with the cables used with the newer boards.

For example, if the A6 Controller assembly is replaced in a 3325 A containing the older boards and cables (white), connectors A14J1, A3J1, and A21J1 on the destination assemblies must be replaced also. The new connectors which can be mounted in the same holes as the old ones, were implemented because of their greater reliability.

Table 8-2 identifies the assemblies, cables, and connectors affected when board replacement is necessary.

## 8-115. TROUBLESHOOTING INFORMATION.

8-116. Service information is organized into service groups, which include schematic diagrams, block diagrams and troubleshooting information for specific areas of the instrument. Paragraph 8-2 contains an index of the circuits and the service groups in which they can be found.

### 8.117. Test Equipment Required.

8-118. Table 8-3 lists the test equipment needed to troubleshoot the 3325A. Any equipment that meets or exceeds the critical specifications may be substituted for the recommended model.

Table 8-3. Test Equipment for Troubleshooting.

| Instrument | Critical Specifications | Recommended Model | Use |
| :---: | :---: | :---: | :---: |
| Signature Analyzer | Signature: 4-digit hexadecimal <br> Characters: O thru 9,A,C,F,H,P,U <br> Threshold: <br> Logic 1: + 2.2 V <br> Logic 0: + 0.5 V <br> Clock Frequency: $\leq 1.5 \mathrm{MHz}$ | -hp-5004A | Logic Circuit Troubleshooting |
| Pulse Generator | Pulse Rate: 500 kHz Pulse Width: $\leq 1 \mu \mathrm{~s}$ DCOffset: 1 V | -hp-3312A | Logic Circuit Troubleshooting |
| Digital Multimeter 4 Digit | DC Function <br> Ranges: . 1 to 100 V <br> Accuracy: $\pm 0.2 \%$ <br> AC Function <br> Ranges: . 1 to 100 V <br> Accuracy: $\pm 0.5 \%$ <br> Ohmmeter <br> Ranges: 100 n to 1 M , <br> Accuracy: $\pm 1 \%$ | -hp-3466A | General Troubleshooting |
| Oscilloscope 2 ehannel | Vertical <br> Bandwidth: de to 100 MHz <br> Deflection: 5 mV to $10 \mathrm{~V} / \mathrm{div}$ <br> Horzontal <br> Main Sweep: 50 ns to 2 s/div <br> Delayed Sweep; 50 ns to $20 \mathrm{~ms} /$ div | -hpr 1740A | General Troubleshooting |
| Electronic Counter | Frequency Measurement: to 20 MHz Accuracy: $\pm 2$ counts <br> Resolution: 8 digits | -hp-5328A | $\div$ N Counter Troubleshooting |



Figure 8-27. Adapter Cable.


Figure 8-28(a). Access to Reverse Side of Assemblies.

## 8-119. Adjustments Required After Repair.

8-120. Following repair of some circuits, certain adjustment procedures must be performed to assure proper operation of the instrument. These adjustments are shown in Table 8-4.

## 8-121. Basic Troubleshooting Procedures.

8-122. Make sure all cables and connectors are firmly scated and that the flat cables from A6 to A21, A3, and A14 are properly aligncd in their connectors. Look for burned or loose components. Also make sure the microcircuit packages that are mounted in sockets are firmly seated.

8-123. The flowchart of Figure 8-28(b) may be used to help isolate the trouble. Some symptoms that are identifiable from the display, outputs, or response to inputs or entries are given in Table 8-5, along with suggested areas to begin troubleshooting.

### 8.124. Orientation Of Components.

8-125. A square pad is used on the printed circuit board to aid in orientation of certain components for replacement and in identification of connections.

| Component | Square Pad Identifies |
| :--- | :--- |
| Integrated Circuit | Pin 1 |
| Transistor | Emitter |
| FET Transistor | Source |
| Diode | Cathode |
| Electrolytic Capacitor | Positive Connection |

## 8-126. Mnemonic Dictionary.

8-127. Most of the logic and data signals in the 3325A are identified on the schematic diagrams by a mnemonic, which is essentially an abbreviation of the signal name. Table 8-6 is a dictionary of the mnemonics used in the 3325A.

## 8-128. Logic Troubleshooting by Signature Analysis.

8-129. Because of the increased complexity of the logic circuits used to control many instruments, malfunctions in these circuits are very difficult to locate. The concept of Signature Analysis is based on the fact that at a particular point in a circuit, the data pulses are predictable under specifically programmed conditions. An instrument such as the -hp- 5004A Signature Analyzer compresses the data at a given point during a controlled time span (window) and displays the resulting four-character signature. This signature indicates whether the correct data was present at the measurement point, and this information can be used to locate a defective component. The signature analysis method is used to troubleshoot the 3325A logic in Service Groups A, B, and C.

8-130. The flowchart of Figure 8-28(b) and the symptoms listed in Table 8-5 may direct you to a Signature Analysis Test in Service Group A, B, or C. Basically, the various tests apply to the following circuits:

Table 8-4. Adjustments Required After Repair.

| Circuit Repaired | Service Group | Adjustments Required | Para. No. |
| :---: | :---: | :---: | :---: |
| Keyboard | A | None |  |
| HP-IB | B | None |  |
| Control | $C$ | None |  |
| Voltage Controlled Oscillator | D | VCO Frequency | 5.9 |
| VCOBuffer | D | None |  |
| - N.F Counter | E | None |  |
| Fractional N Analog | F | Analog Phase Interpolation | $5-10$ |
| 30 MHz Oscillator | G | 30 MHz Reference Oscillator | 5.11 |
| Sine Amplitude \& Amplitude Mod. | G | Amplitude Gain | 5.13 |
| Mixer | H | Mixer Spurs | 5.18 |
| D/A Converter and Sample/Hold | I | D/A Converter Offset | $5-8$ |
| Ramp Gating Circuits | J | Ramp Stability | 5-16 |
| Output Amplifier | K | Amplifier Bias | 5-15 |
|  |  | Amplitude Flatness | 5-17 |
| Sweep Range Circuits | $\wedge$ | $X$ Drive | 5-14 |
| X Drive Integrator | N | $\times$ Drive | $5 \cdot 14$ |
| High Stability Reference | M | High Stability Reference | 5-12 |
| Power Supply | 0 | Power Supply | $\begin{aligned} & 5-7 \\ & 5-8 \end{aligned}$ |


| Test | Service Page | Circuits Tested |
| :---: | :---: | :---: |
| ROM | $8-\mathrm{C}-2$ | ROM's (A6U1-4), Processor (A6U9), and Buffer (A6Ul0). Unless these circuits are operating properly, none of the other tests will work. |
| $\emptyset$ | 8-C-6 | This test is a point-by-point signature analysis of all IC's on the A6 assembly. |
| 1 | 8-C-15 | Tests the ROM/RAM address registers and buffer circuits. |
| 2 | 8-C.23 | Checks the ability of the RAM address register to count up and down. Checks RAM output data. |

3
8-B-1

4
8-A-2

5

Checks the HP-IB data path from the processor to the $\mathrm{HP}-\mathrm{IB}$ connector and back. It does not check the handshake circuits.

Checks the ability of the processor to identify front panel switch closures. Also checks A5 LED drivers, current sources, and digital circuits.

Checks the data path from the processor to the fractional N control IC (A21UI9), and checks several operations of the fractional N control.

Table 8-5. Trouble Symptoms.


Table 8-6. Mnemonic Dictionary.

| Mnemonic | Definition | Mnemonic | Definition |
| :---: | :---: | :---: | :---: |
| HATL | Addressed to Listen | HMBL® |  |
| HATN | Attention | thru | Machine Bus Latch 0 - 7 |
| HATT | Addressed to Talk | H MBL7 |  |
|  |  | HMC | Main Clock |
| HBBCL | Bus Clock on HP-IB side of isolation | HMD® |  |
| $\begin{aligned} & \mathrm{LBCL} \\ & \mathrm{HBDCO} \end{aligned}$ | Bus Clock to HP-IB | thru | Machine Data Bus 0-7 |
|  |  | HMD7 |  |
| thru | Direct Control - - 1 on HP-IB side of |  |  |
| H BDC 1H BDS 1 | isolation | H NBAA | New Byte Accepted by Acceptor |
|  |  |  | Handshake |
| HBDS 1 thru | HP-IB Data Serial 1-2 | HNBAS | New Byte Available to Source Handshake |
| $\begin{aligned} & \mathrm{HBDS} 2 \\ & \mathrm{HBl} \end{aligned}$ |  | H NBMB | Enable Machine Bus Latch to |
|  | Businterrupt |  | Machine Bus |
| HBl <br> HBIG | Bus Interrupt Gated | L NDR | New Data Ready |
| LBOR | Borrow (from RAR Low) | L NMBP | Enable Machine Bus to Processor Bus |
| HBPID1 thru |  | LNRAB | Enable RAM Address to Machine Bus |
|  | HP-I8 Parallel Input Data 1-8 | HNRCA | Enable Reset Code A |
| $\begin{aligned} & \text { thru } \\ & \text { HBPID8 } \end{aligned}$ |  | LNRCB | Enable RCR to Machine Bus |
| HBPOD 1 thru |  | LNRD | Enable ROM Data |
|  | HP-IB Parallel Output Data 1-8 | L NSLF | Enable Sweep Limit Flag |
| HBPODHBSID |  |  |  |
|  | HP-IB Serial Input Data | LODV | Output Data Valid |
| HBSOD | HP..IB Serial Output Data |  |  |
|  | Carry (from RAR Low) | $\begin{aligned} & \text { HPDQ } \\ & \text { thru } \end{aligned}$ | Processor Data Bus 07 |
| LCAR | Count Down Enable | HPD7 | Processor Data Bus 7 |
| $\begin{aligned} & \text { HCDN } \\ & \text { LCHK } \end{aligned}$ | Check | H PIDQ |  |
| LCHK <br> HCODA | Code A | thru | Paralleil input Data (from HP-iB, |
| HCOOBHCS C | Code B | HPID7 | Processor side of Isolation) |
|  |  | LPRS | Preset |
| $\begin{gathered} \text { HCSO } \\ \text { thru } \end{gathered}$ | Chip Select 0 - 2 | HPSG | Program Source Gate |
| $\mathrm{HCS2}$ HCSOD |  |  |  |
| $\begin{aligned} & \text { HCSOD } \\ & \text { thru } \end{aligned}$ | Chip Select 0 - 2 Delayed | HRAO thru | ROM Address © - 11 |
| HCS20 |  | HRA11 |  |
| HCS1DD |  | LRAD | Read Arithmetic Data (from N.F Chip) |
| thru | Chip Select 1-2 Doubly Delayed | LRAN | RAM A Enable |
| HCS2DD |  | LRBA | Read Bus Address |
| LCSR | Clock Shift Register (Keyboard \& Display) | LRBD | Read HP-IB Data |
| L CSRZ | Clear Select ROM Zero | LRBN | RAM 8 Enable |
| HCUN | Count Up Enable | LRCA | Reset Code A |
|  |  | LRCB | Reset Code B |
| LDAC | Data Accepted | LRCN | RAM C Enable |
| $\begin{gathered} \text { HDCD } \\ \text { thru } \end{gathered}$ |  | HREN | Remote Enable |
|  | Direct Control 0-6 | LRFD | Ready for Data |
| HDC6 |  | LRFF | Read Function Flags |
|  |  | LRFND | Reset Fetch New Data |
| LDOE | Data Out Enable | LRIR | Read Interrupt Register |
| $\begin{aligned} & \text { HDSO } \\ & \text { thru } \end{aligned}$ |  | LRKB | Read Keyboard Data |
|  | Device Select 0-3 | HRMAO |  |
| HDS3 |  | thru | RAM ADDRESS $0-9$ |
| $\begin{aligned} & \text { LEC } \\ & \text { HEOI } \end{aligned}$ | External Clock (to N.F Chip) | HRMA9 |  |
|  | End or Identify | LROVD | Reset Output Data Valid |
|  |  | LRSS | Read Signal Source Data |
| HFND | Fetch New Data | LRWN | RAM Write Enable |
| H\|AK | Interrupt Acknowledge | LSAR | Select RAM Address Register |
| H1BIHIEN | Inhibit Bus Interrupt | HSATL | Set Addressed to Listen |
|  | Interrupt Enable | HSATT | Set Addressed to Talk |
| LIFC | Interface Clear | LSCA | Set Code A |
| LIFC* | Interface Clear Latched | LSCB | Set Code B |
| HII | Interrupt Inhibit | LSCR | Select ROM/RAM Control Register |
| LIMBP | Inhibit Machine Bus to Processor Bus | L SFND | Set Fetch New Data |
| LINV | Instruction Valid to N.F Chip) | HSLC | Sweep limit Control |
|  |  | HSLF | Sweep Limit Flag |
| HKCl | Kilohertz Clock interrupt | HSLI | Sweep Limit Interrupt |
| LLCN | Load RCR Enable | LSM | Select Monitor Select Machine Bus (from Decoder) |
| LLD | Load Data In | LSMBL | Select Machine Bus Latch |
| LLDOLLMBL | Load Data Out | LSOD | Serial Output Data to MP-IB, Processor |
|  | Load Machine Bus Latch |  | side of Isolation |
| HLNG | Listening | LSOVD | Set Output Data Valid |
| LLRAR | Load RAM Address Register | HSP | Spare |
|  |  | HSRA | Select RAMA |
| L LRCR | Load RAM/ROM Control Register | HSRB | Select RAM B |
|  | Load RAM Page Register (from Decoder) | $\begin{aligned} & \text { HSRC } \\ & \text { HSRM } \end{aligned}$ | Select RAMC <br> Select RAM ifrom Decoue: |



Figure 8-28(b). Basic Troubleshooting Procedure.

## GENERAL SCHEMATIC NOTES

1. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN. PREFIX WITH ASSEMBLY OR SUBASSEMBLY DESIG. NATION(S) OR BOTH FQR COMPLETE OESIGNATION.
2. COMPQNENT VALUES ARE SHOWN AS FOLLOWS UN. LESS OTHERWISE NOTED.

RESISTANCE IN OHMS CAPACITANCE IN MICROFARADS INDUCTANCE IN MILLIHENRYS
3.

DENOTES EARTH GROUND.
USEO FOR TERMINALS WITH NO LESS THAN A
NO. IS GAUGE WIRE CONNECTED BETWEEN TERMINAL AND EARTH GROUND TERMINAL OR AC POWER RECEPTACLE.
4.

DENOTES FRAME GROUND
USED FOR TERMINALS WHICH ARE PERMA: NENTLY CONNECTED WITHIN APPROXIMATELY O. 1 OHM OF EARTH GROUND
5.


DENOTES GROUND ON PRINTEO CIRCUIT ASSEMBLY. (PERMANENTLY CONNECTED TO FRAME GROUNDI.
6. $\longrightarrow$ - $\ldots$ DENOTESASSEMBLY.
7. DENOTES MAIN SIGNAL PATH.
9.2 DENOTES FEEOBACK
10. $\square$

OENOTES FRONT PANEL MARKING.
11. $\boldsymbol{r}^{-}-\boldsymbol{-}$ - DENOTES REAR PANEL MARKING.
12. DENOTES SCREWDRIVER ADJUST.
13. * AVERAGE VALUE SHOWN, OPTIMUM VALUE SE. LECTED AT FACTORY, THE VALUE OF THESE COMPONENTS MAY VARY FROM ONE INSTRU. MENT TO ANOTHER. THE METHOD OF SELECTING THESE COMPONENTS IS DESCRIGED IN SECTION V OF T'HIS MANUAL.
14. DENOYES SECOND APPEARANCE OF A CON. NECTOR PIN.
15. 924 / DENOTES WIRE COLOR: COLOR CODE SAME AS RESISTOR COLOR CODE. FIRST NUMBER IDEN. TIFIES BASE COLOR, SECOND NUMBER IDEN. TIFIES WIDER STRIP. THIRD NUMBER IDENTIFIES NARROWER STRIP. (e.g. 924, =WHITE, RED. YELLOW.)
17. ALL RELAYS ARE SHOWN DEENERGIZED.


## REFERENCE DESIGNATIONS



## SERVICE GROUP A - KEYBOARD AND DISPLAY.

## Troubleshonting Information.

The most common problem with the A5 front panel assembly are stuck keys. A stuck key is often noticeable by its "lack of play". The following troubleshooting hints are intended to thelp determine whether a problem on the A5 assembly is due to a malfunctioning key or a component failure.

1. Check the 1 kHz clock signal at TP1, TP2, and TP3. The 1 kHz clock is the rate at which a logic " 1 ", supplied by HMD4 of the machine data bus, is shifted through registers U6 and U3.
2. Check U3 pin 13 for a 5 V pulse every 16 ms . A 5 V pulse on this pin at a 16 ms rate indicates that shift registers U 6 and U 3 are functioning properly.
3. Using an oscilloscope, look at the inputs (D0-D3) to U8. A negative going pulse on one of these inputs occurs when a front panel key is pressed. A negative pulse that is present when no keys have been pressed indicates a stuck key.
4. Check the machine data bus lines at the input and output of UY for logic level transitions. The same level present at the input and its corresponding output indicate a problem with U9.
5. Signature Analysis Test \#4 can be used to determine if a key is stuck. This test also checks the LED drivers, current sources, and digital circuits.

## Removal of Keyboard Printed Circuit Assembly A5.

Disconnect the flat gray cable to the keyboard assembly from A6, and disconnect the signal and sync output cables from the front panel.

Remove the plastic trim strip from the top of the front frame by prying up with a small screwdriver or similar tool in one of the slots near either end of the strip.

Remove the two screws from the top of the front frame (beneath the trim strip) and two corresponding screws from the bottom side of the front frame.

Push the printed circuit board and front panel assembly forward to remove from the front frame.
Remove the ten screws that hold the printed circuit board to the front panel assembly.

## Replacement of Keyboard Switches.

The keyboard switches (except the power switch) may be removed by using a hot soldering iron to melt the plastic tabs on the back of the printed circuit board that hold the switch to the board.

The keycap is press-fitted to the switch and may be pulled off.
To install a new switch, make sure the switch is oriented properly, hold it firmly against the printed circuit board, and "rivet" the plastic tabs with a flat soldering iron tip. Be careful not to apply so much heat that the tabs are completely melted.

## SIGNATURE ANALYSIS TEST 4.

This test checks the ability of the processor (A6U9) to identify front panel switch closures. It also checks the A5 LED drivers, current sources, and digital circuits.

This test uses two methods of signature analysis. The main difference between these methods is:

Method 1 tests a repetitive data stream for a fixed period of time and generates a single stable signature.

Method 2 tests a logical $1(+5 \mathrm{~V})$ for several periods of time, which are determined by the 3325A processor in response to the errors it has sensed or the test routine that has been programmed. Each situation produces a unique stable signature.

Some signatures in this test are observed at IC's which are on the front panel printed circuit board, A5. Use the following procedure to gain access to the front of this board:
a. Disconnect the internal cables from the Signal and Sync output connectors.
b. Remove the plastic trim strip from the top of the front frame by prying up with a small screwdriver or similar tool in one of the slots near either end of the strip.
c. Remove the two screws from the top of the front frame (beneath the trim strip) and two corresponding screws from the bottom side of the front frame.
d. Push the printed circuit board and front panel assembly forward to remove from the front frame. Be careful not to put stress on the flat cable to the front panel assembly.
e. Remove the ten screws that hold the printed circuit board to the front panel assembly.

Use the following procedure for Signature Analysis Test 4:
a. Set the 3325A POWER switch to STBY.
b. Disconnect the flat cable to the attenuator assembly to prevent damage to the relays.
c. Connect the signature analyzer as follows:

$$
\begin{aligned}
& \text { Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SA CLK (at left of A6U9) } \\
& \text { Start and Stop......................... . . SA S/S (at right of A6U15) } \\
& \text { Ground.................................................... . . 3325A ground } \\
& \text { (stiffener channel on deck between A6 } \\
& \text { and A21 or any Ground test point) }
\end{aligned}
$$

d. Set the signature analyzer controls as follows:

| Line | On |
| :---: | :---: |
| Start | $\llcorner$ (in) |
| Stop | L(in) |
| Clock | $\Gamma$ (out) |
| Hold | Off |
| Self Test. | Off |

e. Make sure the CSØ, CS1, \& CS2 shorting connectors (near right front corner of A6) are in the center position.
f. Connect A6TP3 and A6TP6 to ground.
g. Sct all bus address switches (A6S1) to the OFF position. See switch drawing below.

h. Sct 3325A POWER switch to ON.
i. Disconnect ground from A6TP3, then A6TP6.
j. Set bus address switch 4 to ON .
$k$. Place the signature analyzer probe on +5 V (logic 1). The large plated area near the center of A 6 is +5 V .

1. Follow the flow diagram from \$TART. If no stable or valid signatures are obtained, the processor (A6U9) or the ROM's (A6U1-4) may be defective. Use the ROM Signature Analysis Test to check these components.

After completion of the test, be sure to replace all cables, jumpers, and switches to the normal position.

$$
\begin{aligned}
& \text { Fig } 8-29 \\
& \text { sh } 10 \% 3
\end{aligned}
$$



Place Signature Analyzer Probe on +5 V . Press and hold each key and read the signature. If any signature is incorrect, take the "NO" exit from this block. All LEDS should be ON except while a key is pressed.




If the signature is not 4F21, indentify the faulty circuit by finding the actual signature in the key signature list. Then place the probe on the point the probe on the pow n the shown below opposite the
signature. If the signature signature. If the signature
observed at this point is the same as the previous signature, take the "YES' exit from this block. If not, take the "NO" exit. If the signature does not correspond to any on the list, go to the ROM Signature Analysis Test.


Troubleshoot A5U8

Faulty Device Select A6U9) or Bad A6-To-A5 Connection.




$$
\begin{aligned}
& \operatorname{Fig} 8.29 \\
& \text { sht.383 }
\end{aligned}
$$



Troubleshoot A6U16

Figure 8-29. Signature Analysis Test 4.



$$
\text { Fig } 8 \cdots 30 \text { sht } 2 \text { of } 4
$$

A-5 KEYBOARD ASSEMBLY 03325-66305
$\qquad$
$\qquad$



$\qquad$

Fig 8-30 sht 3if4
$5-66505$

$\qquad$

$$
\text { Fig 8-30 sht } 40 \text { of } 4
$$



NOTE: POWER STBY/ON SWITCH S44
IS SHOWN ON THE FOWER SUPPLY SCHEMATIC, SERUICE GROUR $P$

Figure 8-30. Keyboard and Display, A5.

## SERVICE GROUP B - HP-IB CIRCUITS.

## Troubleshooting Information.

The most common failure on the HP-IB portion of the A6 board are the optical isolators. The optical isolators are used because of the electrical isolation of the HP-IB circuitry from the rest of the assennbly. The following hints suggest various procedures for troubleshooting this section of the assembly.

1. The HP-IB circuitry has its own +5 V power supply (U65/U74). If HP-IB problems are suspected, the first step should be to determine if +5 V is present.
2. Using an oscilloscope and a probe, check both sides of the optical isolators for legitimate TTL levels. The oscilloscope and probe can also be used to check the data path between the processor and the HP-IB connector.
3. The continuity of the data path from the processor to the HP-IB connector and back is also checked by running signature analysis test \#3.
4. A check of the handshake circuitry is made by running signature analysis test \#0 (Service Group C). This test writes signatures to every point on the A6 board*. When used in conjunction with the schematic, one can check the signatures at the output and input of the individual chips. If a chip has an incorrect output signature, one should then check the input signature. If the input signature is incorrect, then the output signature of the preceding chip should be checked. By troubleshooting in this manner (backwards), one can then identify the chip where the incorrect signature originated.

* This test does not check those gates whose data comes directly from the HP-IB connector.

If the 03325-66506 assembly is to be replaced in a 3325A with serial number 1748A04250 or below, or in one that contains a revision $A$ or revision B A6 assembly, see paragraph 8-113 in the Servicing/Troubleshooting Information section.

## SIGNATURE ANALYSIS TEST 3.

This test checks the HP-IB data path from the processor (U9) to the HP-IB connector and back. It does not check the handshake circuits.

This test uses two methods of signature analysis. The main difference between these methods is:

Method 1 tests a repetitive data stream for a fixed period of time and generates a single stable signature.

Method 2 tests a logical $1(+5 \mathrm{~V})$ for several periods of time, which are determined by the 3325 A processor in response to the errors it has sensed or the test routine that has been programmed. Each situation produces a unique stable signature.

Use the following procedure:
a. Set the 3325A POWER switch to STBY.
b. Disconnect the flat cable to the attenuator assembly to prevent damage to the relays.
c. Connect the signature analyzer as follows:

> Clock
> .SA CLK (at left of A6U9)
> Start and Stop. . . . . . . . . . . . . . . . . . . . . SA S/S (at right of A6U15)
> Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3325A ground
> (stiffener channel on deck between A6 and A21, or any Ground test point)
d. Set the signature analyzer controls as follows:

| Line | On |
| :---: | :---: |
| Start. |  |
| (in) |  |
| Stop. | 乙(in) |
| Clock | $\checkmark$ (out) |
| Hold | . Off |
| Self Test | Off |

e. Place $\operatorname{CS} 0, \mathrm{CS} 1$ and $\operatorname{CS} 2$ shorting connectors (near right front corner of A6) in the O position to select ROM 1 .
f. Set the ROM Disable switch (A6S1) to ON (1). Set all other switches on A6S1 to OFF(0).

g. Connect A6TP3 (between U15 and U16) to ground.
h. Set 3325A POWER to ON.
i. Remove ground from A6TP3.
j. Place the signature analyzer probe on +5 V (logic 1). The large plated area near the center of $A 6$ is +5 V .

If the signature is not 5159 , troubleshoot A6U9 processor, A 6 U 10 (buffer), the processor data lines HPD0 through 7, and associated circuits. Refer to the ROM Signature Analysis Test.
k . Set bus address bit 3 switch to ON (1) (see drawing above). Note the signature obtained with the analyzer probe on +5 V .

The correct +5 V signature is 78 CU .
Most of the signatures taken in this test are on the I/O side of the HP-IB isolators where the normal SA Clock is not available. In order to take these signatures, it is necessary to supply an external clock as follows:

1. Set 3325A POWER to STBY.
m. Disconnect the signature analyzer from the SA CLK.
n. Unsolder the end of the SA. CLK jumper nearest the left edge of the board (away from U9).
o. Apply a pulse train with the following characteristics to the SA CLK jumper:

$$
\begin{aligned}
& \text { FREQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }-400 \mathrm{kHz} \\
& \text { Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 4 \mathrm{~V} \text { p-p } \\
& \text { DC Offsct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }+ \text { 2V } \\
& \text { Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } \leq 1 \mu \mathrm{~s}
\end{aligned}
$$

Connect the pulse generator ground to A6 ground (jumper in right front corner of the board). The -hp- Model 3312A may be used as the pulse generator.
p. Connect a clip lead across A6V1 (left rear conner of A6) to short the isolated ground to circuit ground.
q. Connect the signature analyzer clock lead to the raised \$A CLK jumper (along with the pulse generator).

## r. Set 3325A POWER to ON.

s. Adjust the pulse generator frequency until a stable, gated signature is obtained, indicating that the signature analyzer is triggering on the external clock signal. (The GATE indicator should be flashing and the UNSTABLE SIGNATURE indicator should be off.)
t. The signature taken in Step $k$ should be 78 CU as indicated at the START of the flow diagram. If it is not 78 CU , go to Figure $8-31$ (a) to the section of the diagram headed by the signature actually observed. If no stable signature or none of the signatures shown are observed, go to the ROM Signature Analysis Test. If Test 3 passes successfully, go to Signature Analysis Test 4. The tests associated with each signature heading are described as follows:

78CU - Data paths are good.
a. With ATN grounded, signature $9 \mathrm{P} 9 \mathrm{H}=\mathrm{ATN}$ recognized.
b. With REN grounded, signature $9 H U H=$ REN recognized.
c. With IFC grounded, signature indications are as follows:

A77U $=$ IFC recognized, test passes $\mathrm{P} 9 \mathrm{HU}=\mathrm{IFC}$ recognized, IFC* not recognized 77U6 = IFC not recognized, IFC* recognized Other signatures $=$ IFC not recognized

9P9H - Illegal ATN recognized
9HUH - Illegal REN recognized
A77U - Illegal IFC recognized
3HCC or - Data lost in shift register
U 45 H
3102 - Data lost in I/O

## NOTE

After completion of tests, be sure to replace all cables, switches, connectors, and jumpers to the normal position.


$$
\begin{aligned}
& F_{i} g^{-31 a} \\
& 5 h f^{2}
\end{aligned}
$$



Fig 8-3/a
she of 3


Figure 8-31(a). Signature Analysis Test 3.

Fig $8 \cdot 3 / 5$
She $10 / 4$

F. 58.316
sht 2084

F..58.31b
$\operatorname{sht} 3$ of 4


Fig $3-31 b$
stat 4 of ${ }^{4}$


Figure 8-31(b). Signature Analysis Test 3.

```
\(\operatorname{Fig}_{5} 8 \cdot 316\) sLet iof 3
```



Fig. 8.31 C
shet $2 f^{3}$


$$
\begin{aligned}
& \text { Fig } 8 \cdot 31 c \\
& s^{2 h t} 3 f^{3}
\end{aligned}
$$



Figure 8-31(c). Signature Analysis Test 3.


$$
\begin{aligned}
& \text { Fig } 8.32 \\
& \text { Sit of } 5
\end{aligned}
$$



Note: Should replacement of A6 become necessary, see paragraph 8-113.

$$
\begin{aligned}
& \text { fig } 833 b \\
& \text { she } 3 \mathrm{of}^{3}
\end{aligned}
$$



Figure 8-33(b). Signature Analysis Test 1.


Fig $8-32$
Site 4 of
JD 5 HAKE ,


HEOI



Figure 8-32. HP-IB Circuits, A6.



## SERVICE GROUP C • CONTROL CIRCUITS.

## Troubleshooting Information.

The majority of problems which are isolated to the A6 board can be pinpointed through Signature Analysis. There are, however, a series of troubleshooting checks that can be made prior to running the SA tests. The checks, common failures, and bricf descriptions of the SA tests are presented below.

1. Begin troubleshooting by checking the 1.2 MHz oscillator circuitry for the correct frequency.
2. Should the instrument not turn on properly or respond to inputs, the problem could be with the processor. A check of the nanoprocessor (U9) can be made by disconnecting the A6 board from the A21 (A1) Frequency Synthesis board (W31, A6J4-A21J1). If "A - CAL FAIL" and "OSC FAIL" are then displayed, a significant portion of the processor circuitry is working.
3. A further check of the nanoprocessor is to first disable the buffer (U10) by opening switch $\$ 1 \mathrm{G}$. This enables $a+5 \mathrm{~V}$ level to be present on each of the lines in the data bus. When the processor samples cach data line, the +5 V is interpreted as a "no operation" instruction. The processor then increments the ROM address and the process repeats. Using an oscilloscope, monitor the ROM address lines. Note that the lines should be counting at one-half the frequency of the previous line.
4. Again, should the instrument not respond properly at turn on, check that the "turn on interrupt request" is coming from A 6 Q 1 and U41 pin 6 . This interrupt should also appear at U35 pin 2.
5. A6U18 and A6U19 because of marginal conditions, are a common cause of "OSC FAIL" and "A - CAL FAIL".
6. Check the position of ROM select switches $\operatorname{CSO} \mathrm{CS} 2$. During normal operation (when SA is not being performed), the switches must be in their center position. Note also that the "Normal/Test" jumper used during SA sould be returned to the "Normal" position following the tests.
7. Jumper W1 is in place in standard instruments. W1 is clipped when the High Voltage option is installed. If the instrument is configured with the option but will not accept inputs greater than $10 \mathrm{Vp}-\mathrm{p}$, check that W1 was not resoldered.
8. The nanoprocessor U9, though often replaced, is not always at fault. Because U9 (1820-1691) is a MOS device, carc should be taken when handling so as not to create punch-through damage due to static electricity. If U9 is replaced, insure that A 6 R 8 is $9.53 \mathrm{k} \Omega, \Delta 2$
9. The 1 ms one shot (U8) interrupts the processor at 1 ms intervals to check the front panel for switch closures and to refresh the front panel display. Signatures from U8 may vary from one instrument to the next due to U8 being an analog device. Any signatures, therefore, should be disregarded.
10. The following SA tests are available for checking the A6 assembly. Note that when running the tests and using the bus address switch pack on the A6 board, use the logic levels and switch numbers printed on the PC assembly. Disregard the numbers printed on the pack itself.

ROM Test: Checks the ROMs, processor, and buffer.
SA Test 1: Checks the data path from the processor to the machine data bus and back.
SA Test 2: Checks the RAM address counter and the RAMs.
SA Test 3: Checks the HP-IB path from the processor to the HP-IB connector and back. (See Service Group B.)

SA Test 4: Checks the processor's ability to identify front panel switch closures and stuck switches. It also checks the A5 LED drivers, current sources, and digital circuits. (See Service Group A.)

SA Test 5: Checks the path from the processor to the Fractional-N chip. It also checks the interrupt lines, carry/sweep limit flag path, VCO lines, and the turn on circuit.

SA Test 0: Used after all other tests have failed to isolate the problem. During this test, the processor sends digital signals to all points on the A6 board so that signatures can be taken. This test should be used with the schematic so that bad signatures can be traced to their origin.

Signature analysis is not effective when trying to isolate a problem that is intermittent. If it can be determined that the intermittent symptom is originating from the A6 board, one should try to make the symptom a hard failure through heat, cold, vibration or mild shock. If the symptom remains intermittent and one is certain that it is tied to the A6 assembly, then the board should probably be replaced.

## ROM SIGNATURE ANALYSIS TEST.

Use this test if Signature Analysis Tests 1, 2, and 3 cannot be entered. This test checks the ROM's (A6U1-4), the processor (A6U9), and the buffer (A6U10). If these components are not operating properly, the remaining Signature Analysis tests will not work.

## Procedure.

a. Set 3325 A POWER switch to STBY.
b. Set all five bus address switches (A6\$1) to OFF (O).

c. Set ROM Disable switch (A6S1) to OFF (O).
d. Move N/T (Normal/Test) shorting connector (located between U7 and 13) to T position.
e. CSø through CS2 shorting connectors should be in the center position. (These are located near the right front corner of A6.)
f. Connect the signature analyzer as follows:

> Clock.
> SACLK (at left of A6U9)
> Start and Stop. .CS2
(Test point next to CS2 shorting connector)

g. Set signature analyzer controls as follows:

| Line | ON |
| :---: | :---: |
| Start. | L(in) |
| Stop. |  |
| (in) |  |
| Clock | $\Gamma$ (out) |
| Hold | OFF |
| Self Test. | OFF |

h. Connect TP7 to ground.
i. Set 3325A POWER switch to ON.
j. Remove ground from TP7.

If the +5 V signature is 755 U continue with Step k .
If the +5 V signature is not 755 U go to Step m .
$k$. Place the signature analyzer probe on the following points on A 6 Ul and compare signatures to those below.

| A6U1 Pin | Correct <br> Signature | Data Line |
| :---: | :---: | :---: |
| 9 | 6 C 1 F | 0 |
| 10 | P326 | 1 |
| 11 | 5975 | 2 |
| 13 | 4533 | 3 |
| 14 | $5 H 79$ | 4 |
| 15 | $83 H U$ | 5 |
| 16 | U2FF | 6 |
| 17 | P2CC | 7 |

If all of these signatures are correct, the ROM's have passed this test. Signature analysis tests $\emptyset$ through 5 may now be performed.

If these signatures are not all correct, test each ROM individually as follows:

## ROM 1 (U1) Test.

1. Move the CS1 and CS2 shorting connectors to the $\emptyset$ position (toward edge of board).
2. Place the signature analyzer probe on the following points and compare the signatures.

| A6U1 Pin | Correct <br> Signature | Data Line |
| :---: | :---: | :---: |
| 9 | 63 F 2 | 0 |
| 10 | 0 U 43 | 1 |
| 11 | F60P | 2 |
| 13 | 3854 | 3 |
| 14 | 3 FFH | 4 |
| 15 | 323 F | 5 |
| 16 | 4 P 71 | 6 |
| 17 | 9 H 43 | 7 |

ROM 2 (U2) Test.

1. Move CS 1 shorting connector to the 1 position and CS 2 to the $\emptyset$ position.
2. Place the signature analyzer probe on the following points and compare the signatures.

| A6U2 Pin | Correct <br> Signature | Data Line |
| :---: | :---: | :---: |
| 9 | 4567 | 0 |
| 10 | PCUC | 1 |
| 11 | PC2C | 2 |
| 13 | 883 F | 3 |
| 14 | 6 U 72 | 4 |
| 15 | H89H | 5 |
| 16 | 02 C 6 | 6 |
| 17 | 9474 | 7 |

ROM 3 (U3) Test.

1. Move $\operatorname{CS} 1$ shorting connector to 0 and $\operatorname{CS} 2$ to 1 .
2. Place the signature analyzer probe on the following points and compare the signatures.

| A6U3 Pin | Correct <br> Signature | Data Line |
| :---: | :---: | :---: |
| 9 | C3P4 | 0 |
| 10 | P948 | 1 |
| 11 | U145 | 2 |
| 13 | C848 | 3 |
| 14 | 07 UC | 4 |
| 15 | C602 | 5 |
| 16 | 05HF | 6 |
| 17 | $23 U P$ | 7 |

## ROM 4 (U4) Test.

1. Move CS1 and CS2 shorting connectors to 1 .
2. Place the signature analyzer probe on the following points and compare the signatures.

| A6U4 Pin | Correct <br> Signature | Data Line |
| :---: | :---: | :---: |
| 9 | 2968 | 0 |
| 10 | 694 H | 1 |
| 11 | HU38 | 2 |
| 13 | 0 A 4 C | 3 |
| 14 | 377 C | 4 |
| 15 | 22 UP | 5 |
| 16 | 8266 | 6 |
| 17 | 2 CH 2 | 7 |

After completion of these tests, replace CS1 through CS2 shorting connectors to the center position.

Replace the $\mathrm{N} / \mathrm{T}$ shorting connector to the N position. Set the ROM disable switch to 1 .

1. If the signature in Step j is not 755 U , check the voltage level of A6U42 pin 6 with the signature analyzer probe. It should be high. If not, momentarily ground U42 pin 3 to force pin 6 high. If it is still not high, troubleshoot A6U5, U14, and U42.
m . If the signature is still not 755 U , examine the ROM address lines.
2. Set 3325A POWER to STBY.
3. Move signature analyzer Start and Stop leads to A6TP1 (in front of U9).
4. Place signature analyzer probe on +5 V (logic 1).
5. Set 3325 A POWER to ON.

If the signature is 826 P , troubleshoot A6U14 (Chip Select Delay) and A6U15 (1.2 MHz Clock circuit).

If the signature is not 826 P , examine the ROM address lines HRA 0 through HRA 10 at A6U1.

| A6U1 Pin | Address <br> Line |
| :---: | :---: |
| 8 | HRA@ |
| 7 | HRA1 |
| 6 | HRA2 |
| 5 | HRA3 |
| 4 | HRA4 |
| 3 | HRA5 |
| 2 | HRA6 |
| 1 | HRA7 |
| 23 | HRA8 |
| 22 | HRA9 |
| 19 | HRA10 |

The frequency of the signal at HRA1 should be one-half that of HRAD. HRA2 should be one-half of HRA1, etc., through HRA10. None of the address lines should be a constant level, and no two lines should be the same.

After completion of the test, replace the $\mathrm{N} / \mathrm{T}$ shorting connector to the N position.
After completion of all signature analysis tests, make sure the ROM Disable switch (A6S1) is set to the $\mathrm{ON}(1)$ position.

## SIGNATURE ANALYSIS TEST 0.

Use of this test is recommended after the ROM test or tests 1 through 5 have failed to isolate the faulty circuit. This test reads all the signatures on the A6 assembly, which are presented in tabular form. Close attention should be paid to the schematic diagrams in Service Groups $B$ and $C$ while using this test.

## Procedure.

a. Set 3325A POWER switch to STBY.
b. Disconnect the flat cable to the attenuator assembly to prevent damage to the relays. Be sure to replace this cable carefully after completion of the test, making sure the cable is aligned properly in the connector.
c. Connect the signature analyzer as follows:

> Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . SA CLK (at left of A6U9)
> Start and Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3325 A A6U15 ground
> Ground. . . . . . . . . . . . . . . . . . . . . . . . . . .
(stiffener channel on deck between A6 and A21, or any Ground test point)
d. Set the signature analyzer controls as follows:

| Line | On |
| :---: | :---: |
| Start. | - (in) |
| Stop. | $\checkmark$ (in) |
| Clock | $\bigcirc$ (out) |
| Hold | . Off |
| Self Test. | . . . . Off |

e. Place $\mathrm{CS} \square, \mathrm{CS} 1$, and CS 2 shorting connectors (near right front corner of A 6 ) in the $\emptyset$ position to select ROM 1.
f. Set the ROM Disable switch (A6S1) to ON (1). (See switch drawing below.)

g. Connect A6TP3 (between U15 and U16) to ground. Do not disconnect this ground during this test.

## h. Set 3325A POWER to ON.

i. Place the signature analyzer probe on +5 V (logic 1). The large plated area near the center of A 6 is +5 V .

If the signature is FF32, proceed to Step j .
If the signature is not FF32, troubleshoot A6U9 and U10, the processor data lines HPD日-7 and associated circuits. Refer to the ROM Signature Analysis Test.
j. Set all five Bus Address switches to OFF (O).
k. Place the signature analyzer probe on the points indicated in the tables and compare the signatures. If no stable or valid signatures are obtained, the ROM's (A6U1-4) or the processor (A6U9) may be at fault. Refer to the ROM Signature Analyzer Test.

Integrated circuits with designators greater than U55 are on the I/O side of the HP-IB isolators where the normal SA Clock is not available. In order to take these signatures, it is necessary to supply an external clock. Use the following procedure:
a. Set 3325A POWER to STBY.
b. Disconnect the signature analyzer from the SA CLK.
c. Unsolder the end of the SA CLK jumper nearest the left edge of the board (away from U9).
d. Apply 400 kHz square wave with the following characteristics to the SA CLK jumper:

| Frequency | -400 kHz |
| :---: | :---: |
| Amplitude | 4 V p-p |
| DC Offset. | + +2 V |

Connect the pulse generator ground to A6 ground (jumper in right front corner of the board). The -hp- Model 3312A may be used as the pulse generator.
e. Connect a clip lead across A6V1 to short the isolated ground to circuit ground.
f. Make sure A6TP3 remains grounded.
g. Connect the signature analyzer Clock lead to the raised SA CLK jumper (along with the pulse generator).
h. Set 3325A POWER to ON,
i. Adjust the pulse generator frequency until a stable, gated signature is obtained, indicating that the signature analyzer is triggering on the external clock signal. (The GATE indicator should be flashing and the UNSTABLE SIGNATURE indicator should be off.)
j. Place the signature analyzer probe on the points indicated in the table for IC's with designators U56 and greater. Compare the signatures to the correct signatures in the table.

## NOTE

After completion of tests, be sure to replace all cables, switches, connectors, and jumpers to the normal position.

## Signature Analyzis Test 0 .

| Pin | U1 <br> through U4 | U5 | U6 | U7 | U8 | U9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | OHCO | FF32 | C 475 | FF32 | 0000 | 68CC |
| 2 | H52C | $88 \cup 7$ | 66P6 | 7515 | AF1P | 2H70 |
| 3 | 3HA4 | 44F5 | F342 | C 927 | - | FH4P |
| 4 | 2F5H | 0000 | AH4F | 77F7 | FF32 | 1590 |
| 5 | 159 U | $88 \cup 7$ | 9581 | U237 | FF32 | 2F5H |
| 6 | FH4P | FF32 | 2H79 | 41 PH |  | 3HA4 |
| 7 | $2 \mathrm{H7O}$ | 0000 | 7C10 | 8HHU |  | H52C |
| 8 | 68CC | 44F5 | 7145 | 0000 | FF32 | OHCO |
| 9 | 1C2P | FF32 | 0000 | 075A |  | FF32 |
| 10 | PC97 | $88 \cup 7$ | FA47 | $3 F 37$ |  | FF32 |
| 11 | 68AF | 0000 | UPF8 | U005 |  | FF32 |
| 12 | 0000 | FF32 | P8F2 | 70UC |  | 7 U 44 |
| 13 | 1 C 71 | FF32 | 1UA2 | $64 \cup 1$ |  | 7 A 54 |
| 14 | 1P24 | FF32 | U83F | 0000 |  | 6CF2 |
| 15 | P4AH |  | 8HHU | H62P |  | UPUH |
| 16 | 467P |  | 7515 | FF32 |  | 075A |
| 17 | A12C |  | P476 |  |  | 0000 |
| 18 | 0000 |  | FF32 |  |  | U83F |
| 19 | FF32 |  |  |  |  | 1UA2 |
| 20 | 0000 |  |  |  |  | P8F2 |
|  | ( 41 and $\downarrow 3$ ) FF32 <br> (U2 and U4) |  |  |  |  |  |
| 21 | 0000 |  |  |  |  | UPF8 |
| 22 | FF32 |  |  |  |  | C67C |
| 23 | FF32 |  |  |  |  | 152 U |
| 24 | FF32 |  |  |  |  | $7 \mathrm{UC6}$ |
| 25 |  |  |  |  |  | $21 P 3$ |
| 26 |  |  |  |  |  | $88 \cup 7$ |
| 27 |  |  |  |  |  |  |
| 28 |  |  |  |  |  | 0000 |
| 29 |  |  |  |  |  | FF32 |
| 30 |  |  |  |  |  | 0000 |
| 31 |  |  |  |  |  | 0000 |
| 32 |  |  |  |  |  | FU06 |
| 33 |  |  |  |  |  | 4UFF |
| 34 |  |  |  |  |  | 14 UH |
| 35 |  |  |  |  |  |  |
| 36 |  |  |  |  |  | 60PP |
| 37 |  |  |  |  |  | U655 |
| 38 |  |  |  |  |  | 0000 |
| 39 |  |  |  |  |  | FF32 |
| 40 |  |  |  |  |  | FF32 |


| Pin | U10 | U11 | U12 | U13 | U14 | U15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 44F5 | AH4F | AH4F | FF32 | FF32 |  |
| 2 | 1¢2P | $7 \mathrm{C10}$ | 7 ClO | A029 | 3P9A |  |
| 3 | U83F | 2H79 | 2H79 | 6F1C | 2963 |  |
| 4 | PC97 | 9581 | 9581 | C67C | O1A6 |  |
| 5 | 1UA2 | 66P6 | 66P6 | 152 U | 2AU8 |  |
| 6 | 68AF | C475 | C475 | 593U | 1104 |  |
| 7 | P8F2 | P476 | P476 | 950 H | 22A9 | 0000 |
| 8 | 1 C 71 | 0000 | 0000 | 0000 | 0000 | FC68 |
| 9 | UPF8 | U83F | C67C | AC69 | 0000 | 075A |
| 10 | 0000 | 1UA2 | 152 U | 62FP | 3C7U | 975A |
| 11 | C67C | P8F2 | 7UC6 | APUF | 22A9 | FC68 |
| 12 | 1 P 24 | UPF8 | 21P3 |  | CU57 | FF32 |
| 13 | 152 U | UA22 | 46P4 | 21P3 | 2AU8 | 0000 |
| 14 | P4AH | FA47 | FA47 | 9502 | 3P9A | FF32 |
| 15 | 7UС6 | F342 | F342 | 5980 | 3566 |  |
| 16 | 467 P | FF32 | FF32 | FF32 | FF32 |  |
| 17 | 21 P 3 |  |  |  |  |  |
| 18 | A12C |  |  |  |  |  |
| 19 | 44F5 |  |  |  |  |  |
| 20 | FF32 |  |  |  |  |  |


| Pin | U16 | U17 | U18 | U19 | U20 | U21 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | UPUH | UPUH |  | FF32 | 1UA2 | 152 U |
| 2 | 6CF2 | 6CF2 |  | 9581 | 2H79 | 66P6 |
| 3 | 7A54 | 7A54 |  | 77F7 | 9581 | F342 |
| 4 | 7U44 | 0000 |  | 2H79 | P7U2 | 4AF8 |
| 5 |  |  |  | U237 | UP89 | 1 CF 8 |
| 6 | 075A | $7 \cup 44$ |  | 7 ClO | 7010 | C475 |
| 7 | 515 P | 9 A 92 |  | 70UC | AH4F | P476 |
| 8 | 0000 | 0000 |  | A 44 F | 0000 | 0000 |
| 9 | C982 | A42C |  | $64 \cup 1$ | UPF8 | 21 P 3 |
| 10 | 1 1UUO | 6 F 55 | H6F2 | 0000 | P8F2 | 7UC6 |
| 11 | 9730 | 4HAU | 1 AUO | 8375 | H5P4 | H5P4 |
| 12 | 3 P 18 | H4FH | $5 \mathrm{CO9}$ | F342 | 1 CFS | 2A9P |
| 13 | 565 H | FA47 | 973C | UUCU | 4AF8 | FF32 |
| 14 | 7FA5 | H5P4 | FF32 | 66P6 | 0000 | 0000 |
| 15 | O9P9 | AC69 |  | 3797 | U83F | C67C |
| 16 | FF32 | FF32 |  | C475 | FF32 | FF32 |
| 17 |  |  |  | 783u |  |  |
| 18 |  |  |  | P476 |  |  |
| 19 |  |  |  | FF32 |  |  |
| 20 |  |  |  | FF32 |  |  |


| Pin | U22 | U23 | U24 | U25 | U26 | U27 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FF32 | 0675 | 075A | UPUH | 075A | FF32 |
| 2 | 1104 | 5980 | AC69 | 6CF2 | 7777 | 77F7 |
| 3 | 77F7 | UP89 | FF32 | 7A54 | U83F | U83F |
| 4 | 0146 | 0675 | 075A | 7U44 | U237 | 1 UA2 |
| 5 | U237 | 62FP | H5P4 |  | 1UA2 | U237 |
| 6 | 2963 | P7U2 | FF32 | FC68 | 70UC | 7OUC |
| 7 | 70UC | 0000 | 0000 | FF32 | P8F2 | P8F2 |
| 8 | UP1P | UA22 | H5P4 | 0000 | $64 \cup 1$ | UPF8 |
| 9 | 6401 | A029 | FC68 | FF32 | UPF8 | $64{ }^{6} 1$ |
| 10 | 0000 | 0675 | H5P4 | FF32 | 0000 | 0000 |
| 11 | 8375 | FA47 | AC69 | FF32 | C67C | H4FH |
| 12 | A029 | 0675 | FC68 | FF32 | 8375 | 8375 |
| 13 | UUCU | O75A | AC69 | 075A | 1520 | C67C |
| 14 | 950 H | FF32 | FF32 | FF32 | UUCU | 152 U |
| 15 | 3797 |  |  | FF32 | 7UC6 | UUCU |
| 16 | 62FP |  |  | FF32 | 3797 | 3797 |
| 17 | 7834 |  |  |  | 21P3 | 7UC6 |
| 18 | 5980 |  |  |  | 7830 | 21P3 |
| 19 | FF32 |  |  |  | 075A | 7830 |
| 20 | FF32 |  |  |  | FF32 | FF32 |


| Pin | U28 | U29 | U30 | U31 | U32 | U33 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0000 | 14 UH | H4FH | A42C | FF32 | FF32 |
| 2 | 77F7 | 14UH | 075A | FF32 | 1FP9 | FF32 |
| 3 | $77 F 7$ | 4131 | H397 | FF32 | HOHC | 0000 |
| 4 | U237 | 872A | 950 H | A42C | 8375 | FC68 |
| 5 | $\cup 237$ | 36HC | 0675 | 64U1 | UUCU | 9 A 92 |
| 6 | 70UC | PUP9 | 46 P 4 | AF1P | 7916 | 075A |
| 7 | 70UC | 0000 | 0000 | 0000 | C524 | 0000 |
| 8 | 6401 | F5HC | 0675 | FF32 | 0000 | FF32 |
| 9 | 6401 | FF32 | FA47 | FF32 | A42C | A42C |
| 10 | 0000 | H6UC | FF32 | FF32 | 4319 | 0000 |
| 11 | 8375 | CFU7 | H4FH | 14 UH | 8U2C | 0000 |
| 12 | 8375 | CAH7 | H397 | 14 UH | 3797 | FF32 |
| 13 | UUCU | H085 | 075A | 14 UH | FF32 | FF32 |
| 14 | UUCU | FF32 | FF32 | FF32 | 0000 | FF32 |
| 15 | 3797 |  |  |  | FF32 |  |
| 16 | 3797 |  |  |  | FF32 |  |
| 17 | 7830 |  |  |  |  |  |
| 18 | $783 \cup$ |  |  |  |  |  |
| 19 | 0000 |  |  |  |  |  |
| 20 | FF32 |  |  |  |  |  |


| Pin | U34 | U35 | U36 | U37 | U38 | U39 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FF32 | FF32 | HUC5 | 3P18 | FF32 |  |
| 2 | 0000 | 0000 | 1387 | 09P9 | H085 | HOHC |
| 3 | 4HAU | 77F7 | FU06 | 6401 | 77F7 |  |
| 4 | FF32 | FF32 | 0334 | 70UC | CAH7 | 3300 |
| 5 | 0000 | 3300 | F5HC | U237 | U237 | H56C |
| 6 | FF32 | $\cup 237$ | 09P9 | 77F7 | CFU7 | 8U2C |
| 7 | 0000 | 0000 | 0000 | HUC5 | 70UC | 0000 |
| 8 | P670 | 70UC | FF32 | 0000 | H6UC | 0675 |
| 9 | $39 \mathrm{A5}$ |  | 0000 | 1387 | 64U1 | 075A |
| 10 | FF32 | FF32 | 3 A67 | 0000 | 0000 | FC68 |
| 11 | 39A5 | $64 \cup 1$ | U655 | 7830 | 8375 | H397 |
| 12 | FF32 |  | AFHF | 3797 | PUPG | 075A |
| 13 | AF1P | FF32 | 60pp | UUCU | UUCU | 0000 |
| 14 | FF32 | FF32 | FF32 | 8375 | 36HC | FF32 |
| 15 |  |  |  | 0000 | 3797 |  |
| 16 |  |  |  | FF32 | 872A |  |
| 17 |  |  |  |  | $783 \cup$ |  |
| 18 |  |  |  |  | 4131 |  |
| 19 |  |  |  |  | FF32 |  |
| 20 |  |  |  |  | FF32 |  |


| Pin | U40 | U41 | U42 | U43 | U44 | U45 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8755 |  | FF32 | FF32 | 0000 | FF32 |
| 2 | $4 \mathrm{C67}$ | 3300 |  | FF32 | 0000 | AC69 |
| 3 | 0000 | 0000 | FF32 | 77F7 | 0000 | U83F |
| 4 | FF32 | 0000 | FF32 | FF32 | 0000 | 1UA2 |
| 5 | 09P9 | 0000 |  | U237 | 0000 | P8F2 |
| 6 | F5HC | FF32 |  | FF32 | 0000 | UPF8 |
| 7 | 0000 | 0000 | 0000 | 70UC | FF32 | 0000 |
| 8 |  | 0000 | 98F4 | FF32 | 0000 | 0000 |
| 9 |  | FF32 | 54 U 6 | $64 \cup 1$ |  | 0000 |
| 10 | FF32 | $54 \cup 6$ | AC69 | 0000 |  | 0000 |
| 11 | FF32 |  |  | 8375 |  | UP1P |
| 12 | FF32 |  | 0000 | FF32 |  | 2963 |
| 13 | 0000 | 4967 | FF32 | UUCU |  | 01A6 |
| 14 | FF32 | FF32 | FF32 | FF32 |  | 1104 |
| 15 |  |  |  | 3797 |  | 0000 |
| 16 |  |  |  | FF32 |  | FF32 |
| 17 |  |  |  | 783U |  |  |
| 18 |  |  |  | *FF32 |  |  |
| 19 |  |  |  | FF32 |  |  |
| 20 |  |  |  | FF32 |  |  |

[^15]NOTE
For signatures on $U 51$ and above, circuitry is HP-IB. Refer to test zero procedure.

| Pin | U46 | U51 | U52 | U53 | U54 | U55 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FF32 | FF32 | FF32 | FF32 | FF32 | FF32 |
| 2 | 0000 | FF32 | AFHF | 0334 | O9P9 | 14 UH |
| 3 | FF32 | 83UP | 3 A67 | FF32 | 1387 | 5AUH |
| 4 | 0675 | 0000 | FF32 | FF32 | FF32 | FF32 |
| 5 | 3F37 | 0000 | 0000 | 0000 | 0000 | 0000 |
| 6 | 71 HS | 83UP | 3 A 67 | FF32 | 1387 | 14UH |
| 7 | 0000 | 0000 | AFHF | 0334 | 09P9 | 5AUH |
| 8 | FF32 | FF32 | FF32 | FF32 | FF32 | FF32 |
| 9 | 0000 |  |  |  |  |  |
| 10 | FF32 |  |  |  |  |  |
| 11 | 0000 |  |  |  |  |  |
| 12 | 0000 |  |  |  |  |  |
| 13 | 0000 |  |  |  |  |  |
| 14 | FF32 |  |  |  |  |  |


| Pin | U56 | U57 | U58 | U59 | U60 | U61 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0000 | FF32 | FF32 | FF32 | HOH5 | FF32 |
| 2 | 0000 | 90HP | $1 \mathrm{HO1}$ | 1387 | 1 FP7 | $23 F 5$ |
| 3 | FF32 | 90HP | $1 \mathrm{HO1}$ | 1387 | H3U3 | 4P25 |
| 4 | 0334 | 0000 | 6 HO 3 | 6 HO 3 | 1 UF1 | FF32 |
| 5 | 3 367 | FF32 | 0000 | 4HF9 | FF32 | 83UP |
| 6 | 23 F 5 | 6 HPO | 20FA | 20FA | 0000 | FF32 |
| 7 | 0000 | FF32 | 6H03 | 20FA | 0000 | 83UP |
| 8 | 5AUH | 0000 | 0000 | 0000 | 0000 | 0000 |
| 9 | 3 3 30 | C870 | C870 | C870 | FF32 | 6 HPO |
| 10 | 65 FH | F5HC | F5HC | F5HC | 0000 | 0000 |
| 11 | 14UH | 14UH | 5FPF | H133 | FF32 | 4P25 |
| 12 | H8FU | H8FU | 90 HP | 1H01 | 83UP | $23 F 5$ |
| 13 | H8FU | 003C | 3F19 | 1710 | 4UFF | PFF3 |
| 14 | FF32 | P63F | 1 P 82 | F955 | FF32 | TUF1 |
| 15 |  | F5CC | U5A1 | CH13 |  | 2001 |
| 16 |  | FF32 | FF32 | FF32 |  | FF32 |


| Pin | U62 | U63 | U64 | U66 | U67 | U68 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2001 | 1UF1 | FF32 | 0000 | 0000 | FF32 |
| 2 | 4UFF | H3U3 | P63F | PFU8 | A131 | A961 |
| 3 | 1UF1 | 96 FU | 2PFC | 20FA | 6 HO | 9 OHP |
| 4 | บ024 | 5AUH | FF32 | F129 | A961 | 3F19 |
| 5 | 83UP | 1FP7 | 5AUH | 6932 | $8 \cup 58$ | 8 U 8 |
| 8 | 4UFF | HOH5 | 96 FU | 20FA | 20FA | 4P71 |
| 7 | 0000 | 0000 | 0000 | PFU8 | PFU8 | 1 P82 |
| 8 | 4UFF | F5HC | 3F16 | 0000 | 0000 | USA 1 |
| 9 | 83UP | 09P9 | UO24 | A131 | A131 | 362P |
| 10 | 5AUH | FF32 | FF32 | 6H03 | 6 HO 3 | 0000 |
| 11 | 83UP | 0000 | 2PFC | 5861 | 362P | 2PFC |
| 12 | 4UFF | FF32 | F5CC | 96 FU | 96FU | F129 |
| 13 | 3U30 | 0000 | FF32 | U707 | $4 \mathrm{P71}$ | $1 \mathrm{HO1}$ |
| 14 | FF32 | FF32 | FF32 | 4HF9 | 0000 | 1710 |
| 15 |  |  |  | 81 UC | FF32 | 6932 |
| 16 |  |  |  | FF32 | FF32 | U707 |
| 17 |  |  |  |  |  | F955 |
| 18 |  |  |  |  |  | CH13 |
| 19 |  |  |  |  |  | 5861 |
| 20 |  |  |  |  |  | FF32 |

No signatures for U65

| Pin | U69 | U70 | U71 | U72 | U73 | U75 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2001 | 2001 | 23F5 | 83UP | 0000 | AFHF |
| 2 | U024 | CFFP | PFF3 | HOH5 | U655 | 60PP |
| 3 | HOH5 | PFF3 | FF32 | CFFP | 60PP | U655 |
| 4 | U024 | PFF3 | U024 | H3U3 | 14AF | 3 367 |
| 5 | 1UF1 | 83UP | 1 UF1 | 83UP | $\mathrm{C870}$ | FF32 |
| 6 | H3U3 | CFFP | 2001 | FF32 | 2PFC | 0000 |
| 7 | 0000 | 0000 | 0000 | 0000 | 4P25 | 0000 |
| 8 | 4UFF | 2001 | 3030 | 96 FU | 0000 | 0334 |
| 9 | 83UP | 0334 | 83UP | 5 AUH | 2001 | FU06 |
| 10 | 83UP | 1 UF1 | 5AUH | FF32 | FF32 | FU06 |
| 11 | 7811 | 65FH | FF32 | 0024 | 3030 | 0334 |
| 12 | 5AUH | 5AUH | CFFP | 3F16 | 1 UF1 | U655 |
| 13 | CH13 | $3 \cup 30$ | 23F5 | FF32 | PFF3 | 3 367 |
| 14 | FF32 | FF32 | FF32 | FF32 | 1 UF1 | FF32 |
| 15 |  |  |  |  | $0000$ |  |

No Sigratures for U74

## SIGNATURE ANALYSIS TEST 1.

This test checks the data paths between the processor and machine data bus through A6U13, U20, U21, U26, U27, U28, and U45. It also checks the enable signals to these IC's.

This test uses two methods of signature analysis. The main difference between these methods is:

Method 1 tests a repetitive data stream for a fixed period of time and generates a single stable signature.

Method 2 tests a logical $1(+5 \mathrm{~V})$ for several periods of time, which are determined by the 3325 A processor in response to the errors it has sensed or the test routine that has been programmed. Each situation produces a unique stable signature.

Use the following procedure:
a. Set the 3325A POWER switch to STBY.
b. Disconnect the flat cable to the attenuator assembly to prevent damage to the relays.
c. Connect the signature analyzer as follows:

| Clock | SA CLK (at left of A6U9) |
| :---: | :---: |
| Start and Stop. | .SA S/S (at right of A6U15) |
| Ground. | .3325A ground |
|  | (stiffener channel on deck between A6 |
|  | and A21, or any Ground test point) |

d. Set the signature analyzer controls as follows:

e. Place $\mathrm{CS} \emptyset$ through CS 2 shorting connectors (near right front conner of A6) in the O position to select ROM 1 .
f. Set the ROM Disable switch (A6S1) to ON (1). (See switch drawing below.)

g. Connect A6TP3 (between U15 and U16) to ground.
h. Set 3325A POWER to ON.
i. Remove ground from A6TP3.
j. Place the signature analyzer probe on +5 V (logic 1). The large plated area near the center of A 6 is +5 V .

If the signature is 5159 , proceed to Step $k$.
If the signature is not 5159 , troubleshoot A6U9 (processor), A6U10 (buffer), the processor data lines HPDØ-7, and associated circuits. Refer to the ROM Signature Analysis Test.
k. Set bus address bit 1 switch to ON(1), and set switches 2 through 5 to OFF.

1. The signature should be HCH5 as indicated at the START of the flow diagram. If it is not HCH 5 , go to the section of the diagram headed by the signature actually observed. If no stable signature or none of the signatures shown are observed, go to the ROM Signature Analysis Test. If Test 1 passes successfully, go to Signature Analysis Test 2. The tests associated with each signature heading are described as follows:

HCH5 - This test verifies that data can be successfully transmitted to and from the processor via the machine bus data latch (U27) and buffer (U28). It also tests U13 and U45.

6PCP - This signature indicates a failure of the machine data bus. A 1010 data signal is sent from the processor on the bus through U27, U28, and U26, and read back into the processor. This test checks data paths, clocks, and enabling signals.

AHHC - This test is identical to that for signature 6 PCP except that a different data structure is used (0101). Since 6PCP was not displayed, the clocks and enabling signals are assumed to be correct.

AU96 - This test reads data through U20 and U21 to the address lines of U19. Data from U19 is then sent via U26 back to the processor, U9. This test also checks the enable signals to U20, U21, and U19. U26 is presumed to be good since it did not fail in previous tests.

HHCH - This test is identical to that for signature AU96 except that a different address (1010 as opposed to 0101) is sent to U19.

3AHH - This test sends data through U13 and U22 and tests the enable signals to these IC's.

760A - This test is identical to 3AHH except that it uses a different data stream.
PC76 and - These tests send data to U22 via U45. Enable signals should be good since they H82C did not cause a 760 A signature.
m . When incorrect signatures are encountered, troubleshoot the circuits indicated on the flow diagram.
n. Following a repair indicated by this test, repeat the test beginning at START to determine if there are any other problems that could be detected by this test.

## NOTE

After completion of tests, be sure to replace all cables, switches, connectors, and jumpers to the normal position.

## NOTES

1. A constant interrupt (low) at TP5 may be circumvented by:
a. Set POWER to STBY.
b. Unsolder one end of TP5.
c. Set POWER to ON.
d. Momentarily short across TP5.
2. To isolate the control board (A6) from the other assemblies, disconnect the long flat cable going to the keyboard, and the three short flat cables to the other assemblies. The following conditions should then be observed:

U19 pin 1 should be high
U22 pin 1 should be high
U35 pin 1 should be high
U43 pin 1 - signature should be 5320
After completion of the test, be sure to replace the cables careful$l y$, making sure that the contacts are aligned properly.

> Fig 8-33a
> snt 1064


$$
\begin{aligned}
& \text { Fig 8-33a } \\
& \text { she of } 4
\end{aligned}
$$



If +5 V signature is $\mathrm{HCH} 5, \mathrm{U} 22$ signatures should be:



Device Select Faulty

Fig 8-32a
sht 3 of 4

HCH5, U22 signatures
$U 22 \cdot 11=$ PP9O
$U 22 \cdot 12=6 P 29$
$U 22 \cdot 13=8 F A 8$
$U 22.14=2 C 38$
$U 22-15=P 1 A 6$
$U 22-16=9 P H A$
$U 22 \cdot 17=5 U 7 U$
$U 22-18=1 H 33$


Figure 8 -

Fig 8 -320
she "of"


Figure 8-33(a). Signature Analysis Test 1.

Fig 8-3.3b
sht of 3


$$
\begin{aligned}
& \text { Fis } 83 b \\
& \text { sht } 2 f^{-3}
\end{aligned}
$$



$$
\begin{aligned}
& \text { fig } 833 b \\
& \text { she } 3 \mathrm{of}^{3}
\end{aligned}
$$



Figure 8-33(b). Signature Analysis Test 1.

## SIGNATURE ANALYSIS TEST 2.

This test checks the ability of the RAM address register to count up and down, and checks the RAM output data.

This test uses two methods of signature analysis. The main difference between these methods is:

Method 1 tests a repetitive data stream for a fixed period of time and generates a single stable signature.

Method 2 tests a logical $1(+5 \mathrm{~V})$ for several periods of time, which are determined by the 3325A processor in response to the errors it has sensed or the test routine that has been programmed. Each situation produces a unique stable signature.

Use the following procedure:
a. Set the 3325A POWER switch to STBY.
b. Disconnect the flat cable to the attenuator assembly to prevent damage to the relays.
c. Connect the signature analyzer as follows:

> Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . SA CLK (at left of A6U9)
> Start and Stop. . . . . . . . . . . . . . . . . . . . . SA S/S (at right of A6U15)
> Ground
> 3325A ground
> (stiffener channel on deck between A6 and A21, or any Ground test point)
d. Set the signature analyzer controls as follows:

| Line | On |
| :---: | :---: |
| Start. | L(in) |
| Stop. | L(in) |
| Clock | $\checkmark$ (out) |
| Hold | Off |
| Self Test. | Off |

e. Place CS0 through CS2 shorting connectors (near right front corner of A6) in the O position to select ROM 1.
f. Set the ROM Disable switch (A6S1) to ON (1). Set all other switches to OFF (0).

g. Connect A6TP3 (between U15 and U16) to ground.
h. Set 3325A POWER to ON.
i. Remove ground from A6TP3.
j. Place the signature analyzer probe on $+5 \mathrm{~V}(\operatorname{logic} 1)$. The large plated area near the center of A6 is +5 V .

If the signature is 5159 , proceed to Step $k$.
If the signature is not 5159 , troubleshoot A6U9 (processor), A6U10 (buffer), the processor data lines HPD0-7, and associated circuits. Refer to the ROM Signature Analysis Test.
k. Set bus address bit 2 switch to $\mathrm{ON}(1)$, and set switch 1 and switches 3 through 5 to OFF. (See switch drawing above.)
I. The signature should be 7C97 as indicated at the START of the flow diagram. If it is not 7C97, go to the section of the diagram headed by the signature actually observed. If no stable signature or none of the signatures shown are observed, go to the ROM Signature Analysis Test. If Test 2 passes successfully, go to Signature Analysis Test 3. The tests associated with each signature heading are described as follows:

7C97 - This signature implies that the three RAM's may be addressed and read from correctly. It also indicates that U20 and U21 count up and down correctly.

FF7C - This signature indicates that U20 and U21 do not count up correctly. The test also checks enable signals.

279A - This signature indicates that U20 and U21 do not count down correctly.
709A - This signature indicates that RAM A or its enable signals are not correct.
F26C - This signature indicates that RAM B or its enable signals are not correct.
57C9 - This signature indicates that RAM C or its enable signals are not correct.

## NOTE

After completion of tests, be sure to replace all cables, switches, connectors, and jumpers to the normal position.


$$
\begin{aligned}
& \text { Fig } 8-34 a \\
& \text { sht } 284
\end{aligned}
$$



Fig 8-34a
Sht 3 of 4.


Fig
8. $34=$
$5 x+4$ of


Figure 8-34(a). Signature Analysis Test 2.


> Fis $8 \cdot 34 b$
> $5+2084$




Figure 8-34(b). Signature Analysis Test 2.

## SIGNATURE ANALYSIS TEST 5.

This test checks the data path from the processor (A6U9) to the Fractional N Control IC (A21U19). It disables the processor interrupt and checks for signals on the various interrupt lines. This test also checks the 1 ms timing one-shot (A6U8), the Carry/Sweep limit flag path, the VCO status lines, and the turn-on circuits.

This test uses two methods of signature analysis. The main difference between these methods is:

Method 1 tests a repetitive data stream for a fixed period of time and generates a single stable signature.

Method 2 tests a logical $1(+5 \mathrm{~V})$ for several periods of time, which are determined by the 3325A processor in response to the errors it has sensed or the test routine that has been programmed. Each situation produces a unique stable signature.

Use the following procedure for Signature Analysis Test 4:
a. Set the 3325A POWER switch to STBY.
b. Disconnect the flat cable to the attenuator assembly to prevent damage to the relays.
c. Connect the signature analyzer as follows:

> Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . SA CLK (at left of A6U9)
> Start and Stop.......................... . . SA S/S(at right of A6UI5)
> Ground....................................................3325A ground
> (stiffener channel on deck between A6 and A21, or any Ground test point)
d. Set the signature analyzer controls as follows:

| Line | On |
| :---: | :---: |
| Start | _-(in) |
| Stop. | $\checkmark$ (in) |
| Clock | $\checkmark$ (out) |
| Hold | Off |
| Self Test | Off |

e. Make surc the $\operatorname{CS} \emptyset$ through $\operatorname{CS} 2$ shorting connectors (near right front corner of A 6 ) are in the center position.
f. Connect A6TP3 and A6TP6 to ground.
g. Set all bus address switches (A6S1) to the OFF position. See switch drawing below.

h. Set 3325A POWER switch to ON.
i. Disconnect ground from A6TP3 then A6TP6.
j. Set bus address switch 5 to ON .
k . Place the signature analyzer probe on +5 V (logic 1). The large plated area near the center of A6 is +5 V .

1. Follow the flow diagram from START. If no stable or valid signatures are obtained, the processor (A6U9) or the ROM's (A6U1-4) may be defective. Use the ROM Signature Analysis Test to check these components.

## NOTE

After completion of the test, be sure to replace all cables, jumpers, and switches to the normal position.

The signature taken in Step k should be FC6A as indicated at the START of the flow diagram. If it is not, go to the section of the diagram headed by the signature actually observed. The tests associated with each signature heading are described as follows:

FC6A -Test passes.
CAUH - Erroneous Turn-on signal.
PCU5 - Erroneous bus interrupt.
AUH6 - Erroneous sweep limit flag.
CU5C - Timer error.
4525
5307 - Fractional N IC Data lost.

1123 - Invalid Sweep Limit Flag
1232 - No Sweep Limit Flag.

Fig 8-35a
She of 5

232 C - Processor receiving a VCO High signal.
8FAF - Processor receiving a VCO Low signal.
AFC6 -Missed Sweep Limit Interrupt.
C2HA - Missed 1 ms Clock.

## NOTE

Unless otherwise identified, all IC's in this test are on the A6 assembly.

$$
\begin{aligned}
& \text { Fig } 8 \cdot 35 a \\
& \text { cht of }
\end{aligned}
$$



Fig $8 \cdots 35$
shet 3 of 5


Fig 8.350
Srt4ofs


$$
\begin{aligned}
& \text { rigs } 850 \\
& \text { She } 585^{\circ}
\end{aligned}
$$



Figure 8-35(a). Signature Analysis Test 5 .

$$
\begin{aligned}
& \text { Fis } 8-35 b \\
& \text { sit } 10 f y
\end{aligned}
$$



$$
\begin{aligned}
& \text { Fig } 8-35 b \\
& \text { sht } 2044
\end{aligned}
$$


$l 7835$ $\operatorname{sit} 30 \%^{4}$


Figure 8 -

$$
\begin{aligned}
& \text { Fig } 85 b \\
& \text { sit } 40 \gamma 4
\end{aligned}
$$



Figure 8-35(b). Signature Analysis Test 5.

Fis $8 \cdot 356$
$\operatorname{sht}+0^{2}$


$$
\begin{aligned}
& \text { Sis } 8 \cdot 302 \\
& 546.060
\end{aligned}
$$



Figure 8-35(c). Signature Analysis Test 5.


$$
\begin{aligned}
& \text { Figs 8-36 } \\
& \text { shut } 1 \text { of } 5
\end{aligned}
$$



Note 1: Refer to paragraph 8 -113 if board replacement is necessary.


$$
\begin{aligned}
& F, y^{8-36} \\
& \operatorname{sut} 38^{5}
\end{aligned}
$$



MTITHT
To U37, U30 (NP-IB)

Fig 8.36
sut 4 of 5


$$
\begin{aligned}
& \text { Fig } 8 \cdot 36 \\
& \text { site } 8^{5}
\end{aligned}
$$



Figure 8-36. Control Circuits, A6.


Control Circuits Block Diagram

## SERVICE GROUP D • VOLTAGE CONTROLLED OSCILLATOR SHIELD.

The VCO circuit is covered by a shield consisting of a flat cover and an extrusion. Always set the POWER switch to STBY before removing or replacing the shield. When replacing the shield, make sure the key on the bottom edge of the shield is aligned with the hole in the printed circuit board.

## Voltage Controlled Oscillator Troubleshooting.

## "OSC FAIL" Display Indication.

a. With an oscilloscope, check the reference pulse signal at A21U1 pin 11 . This should be a very narrow pulse with an amplitude of approximately 2 V p-p at a frequency of 100 kHz .

If this signal is correct, go to Step b.
If this signal is not correct, go to Service Group G.

## \&CAUTION\}

Do not allow disconnected cable connectors to contact the printed circuit boards or components, or circuits may be damaged.
b. Check the $+5 \mathrm{~V},+15 \mathrm{~V}$, and -15 V power supply voltages at the following points:

$$
\begin{aligned}
& +5 \mathrm{~V}--- \text { C33 (Service Group F) } \\
& +15 \mathrm{~V}-\ldots-\mathrm{C} 10(\text { Service Group F) } \\
& +15 \mathrm{~V}---\mathrm{C} 26 \text { (Service Group F) }
\end{aligned}
$$

Morcover, when the problem has been isolated to the functional block, the first step should be a check of the power supply voltage into the functional block.
c. Make sure the VCO oscillates at the top and bottom of its frequency range. Disconnect the cable from A21J18A (cable marked $18 \mathrm{~S}-\mathrm{H}$ ). This is the VCO control voltage. Measure the frequency of the signal at A21U34 pin 14 and at A21Q161 collector. The frequency should be approximately 45 MHz . If the frequency is not approximately 45 MHz , check varicaps CR164 and CR166.
d. Place an external dc voltage $(-3 \mathrm{~V}$ to $+10 \mathrm{~V})$ at the VCO input and note the following frequencies at the collector of Q161 and at U34 pin 14.

| DC Voltage | Frequency |
| :---: | ---: |
| -3 V | 60.9 MHz |
| +5 V | 42.6 MHz |
| +10 V | 30 MHz |

If the VCO frequency is not correct, disconnect the external DC power supply and measure the DC voltages noted on the VCO schematic diagram. Voltages should be within $\pm 10 \%$. (Voltages are measured with A21 1818 A still disconnected.)

If the VCO frequencies are correct, go to step e.
e. Reconnect the cable to A21J18A. Measure the voltage levels at A21U33 pins 1 and 7. The voltage at one of these pins may be at approximately +13 V , and the other at a negative voltage. (If the frequency synthesis circuits are operating correctly, both pins will be negative.
f. Connect an oscilloscope to A21TP9.

If pin 1 of A21U33 is positive, and the signal at TP9 is always positive, the trouble is probably in the Integrator, Bias, or Sample/Hold circuits. Go to Service Group F.

If pin 1 of A21U33 is positive and the signal at TP9 is mostly negative, the trouble is probably in the $\div$ N.F Counter circuits, Service Group E, or the Phase Comparator, Service Group F.

If pin 7 of A21U33 is positive, and the signal at TP9 is always positive, the trouble is probably in the $\div$ N.F Counter circuits, Service Group E, or the Phase Comparator, Service Group F.

If pin 7 of A21U33 is positive, and the signal at TP9 is mostly negative, the trouble is probably in the Integrator, Bias, or Sample/Hold circuits. Go to Service Group F.

## No Rear Panel AUX Output, or Incorrect AUX Frequency (Either One-Half or Two Times the Programmed Frequency).

a. Set function to sine, frequency to 10 MHz .
b. Measure voltage level at A3U18 pin 9. Should be at a TTL high level ( $\mathfrak{z}+2.4 \mathrm{~V}$ ). If not, go to Stepg.
c. Set frequency to 21 MHz . Voltage level at A3U18 pin 9 should be TTL low ( $\leq+0.4 \mathrm{~V}$ ). Voltage at A3U18 pin 6 should be high. If either voltage is not correct go to Stepg.
d. Set frequency to 29.999999999 MHz . Voltage levels should be the same as in Step c.
e. Set frequency to 30 MHz . Voltage at A3U18 pin 6 should be low, pin 9 should be low.
f. If all of the above levels are correct, the trouble is probably in $\mathrm{A} 3 \mathrm{U} 18, \mathrm{U} 19, \mathrm{C} 152$, or R158.
g. If any of the above levels is incorrect, check input pins 12 and 13 of A3U10 for the presence of TTL level pulses.

If input pulses are present, A3UI0 may be defective.
If input pulses are not present, go to Control Logic troubleshooting, Service Group C.


A21 Component Locations

| Designator | Board Location | Designator | Board Location | Designator | Board Location | Designator | Board Location | Designator | Board Location |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C1 | A | C111 | E | $L 106$ | E | R41 | C | R121 | F |
| C2 | A | C112 | $E$ | L107 | F | R42 | C | R122 | F |
| C3 | A | C113 | E | L108 | F | R43 | C | R123 | F |
| C4 | A | C114 | $\varepsilon$ | L109 | F | R44 | C |  |  |
|  |  |  |  |  |  | R45 | C | R151 | G |
| C6 | A | C116 | F | L111 | F |  |  |  |  |
| C7 | A | C117 | F | L112 | F | R46 | C | R153 | G |
| C8 | A | C118 | F | L113 | F | R47 | C | R154 | G |
| C9 | A | C119 | F | L1 14 | F | R48 | C |  |  |
|  |  |  |  |  |  | R49 | C | R156 | G |
| C11 | A | C121 | F | L116 | F |  |  | R157 | G |
| C12 | B | C122 | F | L. 117 | $F$ | R56 | D | R158 | G |
| C13 | B | C123 | F |  |  | R57 | D | R159 | G |
| C14 | B | C124 | F | L151 | G | R58 | D |  |  |
|  |  |  |  | L152 | G | R59 | D | T1 | F |
| C16 | B | C126 | F | L153 | G |  |  | T2 | F |
| C17 | B | C127 | F |  |  | R61 | D |  |  |
| C18 | B | C128 | F | P2 | D | R62 | D | TP1 | B |
| C19 | B | C129 | F |  |  | R63 | D | TP2 | C |
|  |  |  |  | Q1 | A | R64 | D | TP3 | C |
| C21 | B | C151 | G | Q2 | B |  |  | TP4 | D |
| C 22 | B | C152 | G | Q3 | B | R66 | D |  |  |
| C23 | B | C153 | G | Q4 | C | R67 | D | TP6 | E |
| C24 | C | C154 | G | Q6 | E | R68 | D | TP7 | E |
| C26 | C |  |  |  |  | R69 | D |  |  |
| C27 | C | C156 | G | Q101 | E | R70 | C | U1 | A |
| C28 | B | C157 | G | Q102 | E |  |  | U2 | A |
| C29 | B | C158 | G |  |  | R71 | D | U3 | A |
|  |  |  |  | R1 | A | R72 | C | U4 | A |
| C31 | B | CR1 | A | R2 | B | R73 | D | U5 | B |
| C32 | C | CR2 | A | R3 | A | R74 | D |  |  |
| C33 | C | CR3 | A |  |  |  |  | U6 | B |
| C34 | B | CR4 | A | R6 | A | R76 | D | U7 | B |
|  |  |  |  | R7 | A | R77 | D | U8 | B |
| C36 | C | CR6 | A | R8 | A | R78 | D | U9 | C |
| C37 | C | CR7 | B | R9 | A | R79 | D | U10 | D |
| C38 | C | CR8 | C | R10 | A |  |  |  |  |
| C39 | C |  |  |  |  | R81 | D | U11 | 0 |
|  |  | CR101 | F | R11 | A | R82 | D | U12 | D |
| C41 | C |  |  | R 12 | A | R83 | D | U13 | D |
| C42 | C | J1 | C | R13 | A | R84 | D | U14 | D |
| C43 | C | J2 | D | R14 | A |  |  | U15 | E |
| C44 | C | J3 | G |  |  | R86 | D |  |  |
|  |  |  |  |  | A | R87 | D | U16 | F |
| C46 | C | J7 | 0 | R17 | B | R88 | D | U17 | G |
| C47 | C | J8 | B | R18 | B | R89 | D | U18 | G |
| C48 | C | J9 | A | R19 | B |  |  | U19 | G |
| C49 | D | $J 10$ | A |  |  | R91 |  |  |  |
|  |  | J11 | A | R21 | B | R92 | D | Y1 | C |
| C51 | D |  |  | R22 | 8 | R93 | D |  |  |
| C52 | D | J15 | G | R23 | B |  |  | Norm/Test | D |
| C53 | D | J23 | C | R24 | B | R101 | E |  |  |
| C54 | D | J24 | D |  |  | R102 | E |  |  |
|  |  |  |  | R26 | 8 | R103 | E |  |  |
| C56 | 0 | L1 | A | R27 | B | R104 | E |  |  |
| C57 | D | 1.2 | B | R28 | B |  |  |  |  |
| C58 | D | L3 | B | R29 | B | R106 | E |  |  |
| C59 | E | 1.4 | C | R30 | B | R107 | E |  |  |
|  |  | L5 | B |  |  | R108 | E |  |  |
| C61 | E |  |  | R32 | B | R109 | E |  |  |
|  |  | L6 | B | R33 | C |  |  |  |  |
| C101 | E | L.7 | B | R34 | C | R111 | E |  |  |
| C102 | E | L8 | C |  |  | R112 | E |  |  |
| C 103 | $\varepsilon$ | L9 | C | R36 | C | R113 | F |  |  |
| C 104 | E |  |  | R37 | C | R114 | F |  |  |
|  |  | L101 | E | R38 | C | R115 | F |  |  |
| C106 | E | L102 | E | R39 | C |  |  |  |  |
| C107 | E | L103 | E |  |  | R116 | F |  |  |
| C108 | E | L. 104 | E |  |  | R117 | F |  |  |
| C109 | E | L105 | E |  |  | R118 | F |  |  |
|  |  |  |  |  |  | R119 | F |  |  |

A3 Component Locations


Fig 8.37 sht if 5


Fig $8-37$

$$
\text { She } 2 f 5
$$



> Fig $8-37$
> Sut 3 f 5

$F_{\text {ig }} 8.37$
sht 4 of 5


$$
\begin{aligned}
& \text { Fis } 8-37 \\
& \text { sht } 5 \text { of } 5
\end{aligned}
$$



Figure 8-37, VCO, A21, and VCO Buffer, A3.

SERVICE GROUP E $-\div$ N.F COUNTER.
$\div$ N.F Counter Troubleshooting.


#### Abstract

GAUTION Do not allow disconnected cable connectors to contact the printed circuit boards or components, or circuits may be damaged.


a. To check the $\div \mathrm{N}$ circuitry, program the front panel for a frequency of 10 MHz and disconnect cable W18 at J18A.
b. Place an external DC voltage source at the input to the VCO ( -3 V to +10 V ), and monitor the waveform at Ul pin 6 . The 2 Vp -p narrow pulse should begin to approach a frequency of 100 kHz as the external $D C$ control voltage is varied.

If the frequency does not approach 100 kHz , troubleshoot the $\div \mathrm{N}$ circuitry (step c). Note that the frequency will approach 100 kHz for every N number programmed into the 3325 and with the appropriate DC level at the VCO input.

If the frcquency at $U 1$ pin 6 approaches $I 00 \mathrm{kHz}$ and the problem appears to be digitally related, check that the API current sources are getting the correct signals and that the FETs are not leaking (sec Service Group F).
c. Disconnect the external power supply. Leave cable W18 disconnected at A21J18A.
d. Measure and note the frequency of the VCO signal at jumper W3. This signal should be approximately 45 MHz .
e. Connect test points A21TP6 and A21TP8 to ground. This disables the $\div \mathrm{N}$ Shift Register and the Pulsc Remove circuits.
f. Measure the frequency at each of the following points in order, and determine the relationship to the VCO frequency at $\mathbb{W} 3$ (step d). Replace any defective components.

A21TPl should be VCO $\div 2$. If not correct, check A21U32 and A21U27 for signal transitions at the input and output pins.

A21TP2 should be VCO $\div 10$. If not correct, check A21U13 and A21U18.

A21U21 pin 8 should be VCO $\div 100$. If not, check A2l 49.

A21TP3 should be VCO $\div 1000$. If not correct, chcek A21U9, A21U11, A21U21, and A21U22.

A21TP4 should be VCO $\div 1000$. If not, check A21U12 and A21U22.

A21TP5 should be VCO $\div 10$. If not, check A2IU24.

A21TP7 should be VCO $\div 1000$. If not, check A.21U29.

A21Q131 collector should be $\mathrm{VCO} \div 1000$ (very narrow pulse at approximately 2 Vp -p). If not, check A21U26, A21U27, A21Q131, and A21C131.

A21U19 pins $2,3,4,5,6,10$, and 11 should be $\mathrm{VCO} \div 1000$. If not, A 21 U 19 is probably defective.
g. If all of the above signals are correct, check for the presence of input pulses at A21U19, pins 20 through 23.
h. Reconnect cable to A21J18A. Press the START CONT key and check for the presence of pulses at A21U19, pins 11, 13, 14, 15, 16, and 17.
i. Disconnect ground from A21TP6 and A21TP8. While in continuous sweep mode, check for the presence of pulses at the input pins, output pins, and clock pins of A21U14 and A21U15. If pulses appear at the input pins and clock inputs and the level at the clear inputs (pin 1) is high, replace the defective latch IC. If pulses are also present at the outputs, the gates in the $\div 5$ Counter circuit (A21U12, A21U17, A21U23) may be defective.

| Designator | Board Location | Designator | Board Location | Designator | Board Location | Designator | Board Location | Designator | 8oard Location |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C1 | A | C166 | G | 11 | c | Q131 | E | $R 51$ | A |
| C2 | A | C167 | G | L2 | 0 | Q132 | D | R52 | A |
| C3 | B | C168 | G | L3 | D |  |  | R53 | C |
| C4 | B | C169 | G |  |  | 0161 | F | R54 | C |
|  |  |  |  | L131 | F | 0162 | G |  |  |
| C6 | A | C171 | G | L132 | E | Q163 | G | R56 | c |
| C7 | C | C172 | G | L133 | E | 0164 | G | R57 | A |
| C8 | A | C173 | G |  |  |  |  | R58 | A |
| C9 | c | C174 | G | L161 | G | R1 | A | R59 | A |
| C10 | A |  |  | $\begin{aligned} & \text { L162 } \\ & \text { L163 } \end{aligned}$ | G | R2 | A | R61 | A |
|  |  | C176 | G |  | G | R3 | A | R62 |  |
| C11 | C | C177 | G |  |  |  | A | 863 | A |
| C12 | C | C178 | G | 01 | B |  |  | $R 64$ | A |
| C13 | A | C179 | G | 02 | B | R6 | A | R65 | A |
| C14 | C |  |  | Q3 | B | R7 | A |  |  |
| C15 | A | C181 | G | 04 | B | R8 | B | 866 | A |
|  |  | C182 | G |  |  | R9 | B | 867 |  |
| C16 | A | C196 | D | 06 | c |  |  | R68 | B |
| C17 | B | C197 | D | 07 | c | R11 | B | R69 | B |
| C18 | B |  |  | 08 | C | R12 | B | R70 | A |
| C19 | C | CR1 | B | 09 | A | R13 | ${ }_{\text {C }}$ | R71 | B |
|  |  | CR2 | B | 010 | A | R14 |  |  |  |
| C21 | D | CR3 | B |  |  |  |  | R72 | 8 |
| C22 | A | CR4 | B | 011 | A | R16 | C | R73 | B |
| C23 | A | CR5 | C | 012 | A | R17 | C | R74 | C |
| C24 | A |  |  | $\begin{array}{r} 013 \\ 014 \end{array}$ | AB | $\begin{aligned} & \text { R18 } \\ & \text { R19 } \end{aligned}$ | $\begin{aligned} & c \\ & c \end{aligned}$ | R75 | B |
|  |  | CR6 | c |  |  |  |  |  |  |
| C26 | A | CR7 | c |  |  |  |  | R76 | C |
| C27 | A | CR8 | B | 016 | 8 | R21 | C | R77 | C |
| C28 | A | CR9 | B | 017 | B | R22 | $\stackrel{C}{C}$ | R78 | C |
| C29 | C | CR11 |  | $\begin{aligned} & \mathrm{Q} 18 \\ & \mathrm{Q} 19 \end{aligned}$ | B | R24 | C | R79 | C |
|  | C | CR12 | C |  |  |  |  | R81 | C |
| C32 | c | CR13 | C | Q21 | B | $\begin{aligned} & \text { R26 } \\ & \text { R27 } \end{aligned}$ | A | R82 | cC |
|  |  | CR15 | c | 022 |  |  |  | R84 |  |
| C131 | E | CR16 | C | 023 | c | $\begin{array}{r} \text { R28 } \\ 829 \end{array}$ | A |  |  |
| C132 | F | CR17 | 8 | 024 | c |  | A | R86 |  |
| C133 | E | CR18 | C | 025 | A |  |  | R86 R87 |  |
| C134 | F | CR19 | C | $\begin{array}{r} \mathbf{Q 2 6} \\ \mathrm{Q} 27 \end{array}$ | A | R31 | A | R87 |  |
| C135 | D | CR131 | D |  | c | R32 | A | R89 |  |
|  |  |  |  |  | A | R33 | B |  |  |
| C136 | F |  |  | $\begin{array}{r} 028 \\ 029 \end{array}$ | BB | R34 |  |  |  |
| C137 | E | CR161 | G |  |  | R36 |  | R91R92 | B |
| C138 | E | CR162 | G |  |  |  | C |  |  |
| C139 | F | CR163 |  | $\begin{aligned} & 031 \\ & 032 \end{aligned}$ | $\begin{aligned} & B \\ & B \end{aligned}$ | R37R38 | CCc | R94 | B |
|  |  | C8164 | G |  |  |  |  |  |  |
| C141 C142 | 0 | CR166 | G | $\begin{array}{r} 032 \\ 033 \end{array}$ | $\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \end{aligned}$ | R39 | C | R96 | BCC8 |
| C142 C143 | F | $J 1$ | D | 037 | C | R41 | c | 897 |  |
| C144 | E | J8 | A | 038 | c | R42 | c | R98 |  |
| C145 | E | $\begin{aligned} & \mathrm{J} 15 \\ & \mathrm{~J} 16 \end{aligned}$ | $\stackrel{\text { c }}{ }$ | 039 | A | $\begin{aligned} & \text { R43 } \\ & \text { R44 } \end{aligned}$ | C | R99 |  |
|  |  |  |  |  |  |  |  |  |  |
| C161 | F | J17A |  | 041 | B | R46 |  | $\begin{aligned} & \text { R102 } \\ & \text { R103 } \end{aligned}$ | C |
| C162 | G |  | ${ }^{\text {A }}$ |  | B |  | A |  |  |
|  | G |  | B | 044 | C | $\begin{aligned} & \text { R47 } \\ & \text { R48 } \end{aligned}$ | $\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$ | R104 |  |
|  |  | J18B | E |  |  | $\begin{aligned} & \text { R48 } \\ & \text { R49 } \end{aligned}$ | A |  |  |



Fig 8-40
sht of 5


3325-6103

03325-66503
Rev C

Fig 840
sht 3015


Fig 8.40
she $40 \%$


Fig 8.40
shtsof 5


Figure 8-40. 30 MHz Reference and Dividers, A3.

## SERVICE GROUP F • FRACTIONAL N ANALOG CIRCUITS.

## Fractional N Analog Troubleshooting.

If pin 1 of A21U33 is positive (in Service Group D Troubleshooting) and the signal at TP9 is always positive, or if pin 7 of A21U33 is positive and the signal at TP9 is mostly negative, the trouble is probably in the Integrator, Bias, or Sample/Hold circuits.

The following waveforms may be observed at the points indicated. If the Bias/API waveforms are correct, but the Integrator output is not correct, the trouble is probably in the Integrator, Current Sources, or the Sample/Hold circuit.

Set the frequency to 1 kHz , function to sine, or switch the power from STBY to ON, and observe 'he waveforms below.
a. If the Counter circuit and VCO are working correctly but the VCO is still not tuning properly, set the frequency to 1.1 MHz and the amplitude to $10 \mathrm{Vp}-\mathrm{p}$ and test for the correct signal at A21TP10 (see Figure 8-F-1). Make sure cable W18 is connected from the Sample and Hold output to the VCO input.

A INTEGRATOR TP10

B BIAS/APIQ19SOURCE

C BIAS Q6,07EMITTERS

b. If the waveform at TP10 is rounded or slightly distorted, make sure the Sample/Hold FETs are not leaking
c. If the waveform at TP10 is bad, test the integrator and Sample/Hold circuitry. Heat sink and remove A 21 CR 4 and A 21 CR 8 to open the phase locked loop at the integrator input. These diodes are a prime noise source especially when overheated. Install jumper W2. This jumper places a $1 \mathrm{k} \Omega$ resistor in parallel with C17, changing the integrator to a transconductance amplifier (Eout $=-1000$ $x$ Iin). While monitoring the integrator output at TP10 and the Sample/Hold output at TP11, inject various currents from -12 mA to +5 mA into the integrator input. An easy way to accomplish this is to use a de power supply with a $1 \mathrm{k} \Omega$ resistor in serics with its output. Every volt from the power supply will inject 1 mA into the integrator. The voltage at TP10 and TPII should equal the power supply voltage only it will be opposite in polarity.

If the voltage at TP10 is correct but the voltage at TP11 is not, troubleshoot the Sample/Hold circuitry. Apply +5 V to A21U6(3). The output voltage at TP11 should be +5 V . If not, replace U6. If the voltage at TPII is correct, momentarily short across $A 21 C 24$, then apply the +5 V at the junction of A21Q27 (drain) and A21Q39 (source). The voltage at TPII should be +5 V . If not, check for the presence of the Sample/Hold Control signal from the base of A21Q44 through to the gates of Q27 and Q39. This signal should be a 0.3 to $0.6 \mu \mathrm{~S}$ TTL pulse at 100 kHz . The pulse width is derived from the VCO frequency (VCO/10) and the repetition rate is derived from VCO/N.F.
d. If the integrator and Sample/Hold circuitry appear to be operating properly, check the following circuits in the order given to isolate the faulty sub-block.

1. Check the phase comparator output at A21TP9. The waveform should appear as shown in Figure 8-F.I for the given conditions.
2. Measure the voltage at the junction of R41 and R39. The voltage should be -8 V .
3. Check the outputs of $U 4$ and $U 5$ for the presence of the bias and API signals. These signals should be toggling while the 3325 A is sweeping. If the signals are not present, check the operation of the Fractional $N$ chip (U19) and check for the latch clock coming from U22 pin 6.
e. If the above circuitry is good, then the fault probably lies in the integrator or the API $1 /$ Bias sub-block.

## API Troubleshooting.

Exercise care when troubleshooting the $\mathrm{API} /$ Bias circuitry. The signals are small currents that are difficult to detect. Note that if the VCO locks but there are large spurious signals present at the output, diodes $A 21 C R 3, C R 4, C R 8$, and CR9 should be checked.
f. Connect cable W18 back to the sample/hold output at J18A if not already done so.

The following steps determine if the digital programming portion or the analog portion of the A21 board is at fault.
g. Enter a frequency on the 3325A front panel of 5000001 Hz .

For this frequency, the fractional-N counter is trying to correct the phase detector error for the 1 Hz offset. Hence, the programming pattern for API 1 will repeat at a 1.0 s rate, API 2 will repeat at 0.1 second rate, API 3 at a 0.01 s rate, API 4 at a 0.001 s rate, and API 5 at a 0.0001 s rate.
h. Using an oscilloscope, check for each programming pulse at the following outputs:

| API 1 | $\mathrm{U} 5(9)$ |
| :--- | :--- |
| API 2 | $\mathrm{U} 4(15)$ |
| API 3 | $\mathrm{U4}(12)$ |
| API 4 | $\mathrm{U} 4(10)$ |
| API 5 | $\mathrm{U4}(7)$ |

i. If these pulses are present, then the digital section is probably good, and the fault may lie in the analog current sources. If any of the pulses are not present, check the fractional-N chip (U19) for the proper signals.

## Individual API Troubleshooting.

j. Connect a spectrum analyzer through a $1 \mathrm{k} \Omega$ series resistor to A 21 TP 11 .
k. Select the sine function on the 3325A and set the frequency to 5000000 Hz .

1. Sct the spectrum analyzer as follows to measure the signal at TP11:

| Start Frequency | Hz |
| :---: | :---: |
| Bandwidth | 30 Hz |
| Frequency Span | $1 \mathrm{kHz} / \mathrm{div}$ |
| Sweep Time/Div | 200s |
| lnput Sensitivity | 10 mV |
| Sweep Mode | Manual |
| Vertical Scale | $10 \mathrm{~dB} / \mathrm{div}$ |

The analyzer should measure a level of $<-70 \mathrm{~dB}$. If the signal at TP11 is $<-70 \mathrm{~dB}$, the API current wurces in their OFF mode are not interfering with the phase detector output and the digital portion of the board is probably good. If the signal is not $<-70 \mathrm{~dB}$, either the API current sources may not have turned off sufficiently or the phase detector input and output signals may be bad.
m. Set the 3325A frequency to 5001000 Hz .
n . The spectrum analyzer should read $<-70 \mathrm{~dB}$ at TP11. If this signal is incorrect, troubleshoot the API 1 sub-block and the U19 programming signals. If the signal is good, the problem is probably not in the API 1 sub-block. Proceed to step o.
o. Set the 3325 A frequency to $5000 \mathrm{100Hz}$.
p. The spectrum analyzer should read $<-70 \mathrm{~dB}$. This frequency tests the API 2 circuit. If the signal is incorrect, troubleshoot the API 2 sub-block and the U19 programming signals. If the signal is good, proceed to step $q$.
q. Set the 3325 A frequency to 5000010 Hz .
r . The spectrum analyzer should read < -70 dB . This frequency tests the API 3 circuit. If the signal is incorrect, troubleshoot the API 3 sub-block and the U19 programming signals. If the signal is good, proceed to step s.
s. Set the 3325 A frequency to 5000001 Hz .

1. The spectrum analyzer should read $<-70 \mathrm{~dB}$ at TP11. This frequency tests the API 4 circuit. If the signal is incorrect, troubleshoot the API 4 sub-block and the U19 programming signals. If the signal is good, proceed to step u.
u. Set the 3325 A frequency to 5000000.1 Hz .
$v$. The spectrum analyzer should read $<-70 \mathrm{~dB}$. This frequency tests the API 5 circuitry. If the level is incorrect, troubleshoot the API 5 sub-block and the U19 programming signals.

## Phase Modulation Troubleshooting

If the output does not respond properly to a phase modulation input, measure dc voltages within the Phase Modulation circuit (A1Q37 and Q38) with:

> Phase Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Off Phase Modulation Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Phase Modulation linearity problems can often be traced to A21CR18 and A21CR19.


Figure 8-F-1. TP9 \& TP10 Waveforms

fig 8.39
sht 2 of 5


Fig 8-39
sht 3 of


5

Sig 8-39
sht 4 of 5

sht 5 of 5


Figure 8-39. Fractional N Analog, A21.
8-F-5/8-F-6

## SERVICE GROUP G • 30MHz REFERENCE AND DIVIDERS.

30MHz Reference Troubleshooting.

## "OSC FAll" Display Indication.

Step a of the "OSC FAIL" troubleshooting in Service Group D should be performed before proceeding with the following.
a. Check frequencies at the following points in order. If the signal is incorrect at any point, troubleshoot the associated circuits.

| A3TP3 | 30 MHz |
| :--- | :--- |
| A3U2 pins 5 and 6 | 10 MHz |
| A3U1 pin 3 | 1 MHz |
| A3UI pin 6 | 2 MHz |
| A3J10 | 1 MHz |
| A3U1 pin 13 | 100 kHz |
| A3U5 pin 8 | 100 kHz |
| A3Q1 collector | 100 kHz (narrow pulse) |

If the $30 \mathrm{MH} \approx$ Oscillator is failing it could be due to heavy loading by the multiplier (A3U11). This can be checked by lifting A3R73. Oscillator failures have also been linked to A3Q6, A3Y1, and A3CR8.


Do not allow disconnected cable connectors to contact the printed circuit boards or components, or circuits may be damaged.

## Amplitude Troubleshooting.

b. The most common cause of problems in the Sine Amplitude Control and Amplitude Modulation circuitry is the multiplier (A3U11). Problems with Ull are usually detected by incorrect voltages at A3TP4. The voltage at TP4 should be pure de and on a working instrument (or a malfunctioning onc with Auto Calibration Disabled" - ACD) will be the following levels:

* Sce Figure 8-44 (Service Group K) for ACD test point location.

| Programmed <br> Amplitude | TP4 |
| :---: | :---: |
| $3 V p-p$ | 2 Vdc |
| $10 \mathrm{Vp}-\mathrm{p}$ | 6 Vdc |

Using the modify key to increase the programmed voltage by one volt at a time should cause the voltage at TP4 to increase linearily as well. Pulling cable W23 at cither end should cause TP4 to reach approximately $6-8 \mathrm{~V}$.
c. If the voltage at TP4 is correct but the output amplitude is still incorrect, check the ac voltages on U14 pins 6 and 7 . With 10 Vp -p programmed, both voltage levels should be approximately 0.6 V p-p. If not and with W23 disconnected at A3J23, measure the voltage at the following points:

| A3TP4 | $6-8 \mathrm{Vdc}$ |
| :--- | :--- |
| A3U11(9) | 4.8 Vdc |

Note also that U14 is probably bad if the frequency difference between pins 6 and 7 is greater than $20 \%$ (the frequency should be approximately 30 MHz on both pins).
d. If after A3U11 and/or A3U14 have been replaced and incorrect voltages are measured at TP4, the amplitude problem may be isolated via Service Groups C, J, or I.
e. If the voltages at TP4 are correct and the output amplitude is incorrect, troubleshoot the problem via Service Groups H or J.


Figure 8-G-1. Sine Amplitude Control Path.
fig. 8-40
sat 1 of 5


Fig $8-40$
sat 2 of 5


3325-C203

sig $8-40$
sht 3 of 5




Figure $8-40.30 \mathrm{MHz}$ Reference and Dividers, A3.

## SERVICE GROUP H - MIXER.

## Mixer Shields.

The Mixer circuits are covered by two shields, each consisting of a flat cover and an extrusion. Always set the POWER switch to STBY before removing or replacing the shields. When replacing a shield, make sure the key on the bottom edge of the shield is aligned with the hole in the printed circuit board. Also, make sure the hole in the cover nearest the front of the instrument is over the mixer adjustment resistor.

## Mixer Troubleshooting.

Failures on this portion of the A3 board are usually linked to A3CR101, A3U16, and sometimes A3U15. A3U16 often fails because of metalization.
a. Ground the Auto Calibration Disable (ACD) test point (Service Group K - Figure 8-44) and cycle power. When $10 \mathrm{Vp}-\mathrm{p}$ is programmed, the voltage at A3TP6 should be 100 mVp -p with no dc. If this voltage is not correct, make sure that ACD is disabled and check TP6 again. If the voltage is still incorrect, the fault lies prior to TP6.
b. To check for a A3CR101 failure, turn the instrument off and measure the resistance from TP6 to ground. An ohmmeter with $\leq 1 \mathrm{~mA}$ of current ( 3455 A for example) is needed. The resistance should range from $198 \Omega$ to $202 \Omega$. If the resistance measures less than $198 \Omega$, one of the diodes in CR101 is leaky. CR101 can also be responsible for poor harmonic distortion and spurs.
c. When replacing CR101, a good technique is to use four round toothpicks to position each of the four leads into place. This enables the new CR101 to be checked for satisfactory operation before it is soldered in plate. Since the orientation of CRIO1 often affects harmonics and spurs, rotating it 90,180 , or 270 degrees can often improve these specifications. Use care when replacing CR101. Because of its small size, it is often damaged when being soldered.
d. The waveform on the secondary windings of T 1 (side closest to CR101 on schematic) can be observed on an oscilloscope. At turn-on, this waveform should be a $2 \mathrm{Vp}-\mathrm{p}, 30 \mathrm{MHz}$ sine wave on both leads. Note that the waveform on T2 is not as easily observed.
e. The voltage measured at A3TP7 should be the same as A3TP6 (step a). If this is the case, A3U15 is probably good.
f. The mixer output signal leaves the A3 board and enters the A14 board as a current via cable W24. A check of this current is made as follows:

1. Connect the $A C D$ test point (Service Group $K$ ) to ground and cycle instrument power.
2. Move the Norm/Test jumper on A3 (Service Group H) to the test position.
3. Program the front panel for a sine function at $10 \mathrm{Vp}-\mathrm{p}$.
4. Remove cable W24 from connector J24 on A3 (Service Group H).
5. Place an oscilloscope probe on J 24 's center connector. The signal should be close to $2.00 \mathrm{Vp}-\mathrm{p}$ with 2.2 Vdc .
6. Program an instrument sweep from 1 kHz to 20 MHz while monitoring the signal at the center connector of $\mathbf{J} 24$. Note that the voltages should remain the same. If they do not, check the multiplier (U11) and the differential amplifier (U14) in Service Group G.


Figure 8-H-1. Sine Amplitude Control Path.

Fig $8-41$
$2 h t \operatorname{lof} 4$




$$
\begin{aligned}
& \text { Gig } 8.41 \\
& \text { she 4fy }
\end{aligned}
$$



Figure 8-41. Mixer, A3.

## SERVICE GROUP I - d/A CONVERTER AND SAMPLE HOLD.

## D/A and Sample/Hold Troubleshooting.

These circuits convert digital information (from the controller) to the analog voltages which control output level, dc offset, etc. If these control voltages appear to be incorrect (Service Groups J, K, or N) the trouble may be in the DAC counters, current source, or integrator, or in the Sample/Hold switches or amplifiers.

Observe the "DAC Integrator Out" pulse train shown below. The voltage level at each Sample/Hold output amplifier test point should be identical to the level of its corresponding pulse at the DAC test point. This pulse train occurs at instrument turn-on and with the ACD test point grounded (schematic K - Service Group K). Note that the levels have a tolerance of $\pm 0.02 \mathrm{Vdc}$. Verification of these levels is made by again grounding the ACD test point, externally triggering an oscilloscope on the positive slope of test point $A Z$, and connecting the scope's input to the DAC test point.

A ANALOGSWITCHENABLE

B DAC INTEGRATOR OUT

$1=$ DAC Auto Zero
2 = Amplitude Calibration Level
3 = Output Amplitude
$4=\mathrm{DC}$ Offset
$5=\mathrm{DC}$ Offset Correction
$6=\mathrm{X}$ Drive
(No TP) 0.0Vdc
(TP + LVL) -10.2 Vdc
(TP AMPL) -4.0 Vdc
(TP OS2) 0.0 Vdc
(TP O\$1) 0.0 Vdc
(TP XDR) 0.0 Vdc

If the level at each Sample/Hold test point is not the same as its corresponding pulse at the DAC test point, suspect problems with the analog switch, the op amp, or the Sample/Hold capacitor. The following information can also help one determine if the Sample/Hold output is good.

The DAC Auto Zero pulse is approximately 0 V and the voltage out of A14U17 will vary slightly around -4.2 V .

+ LVL: This voltage is used during self-calibration (AMPTD CAL) at which time + LVL jumps to various levels for a period of about 1 second. At all other times, + LVL remains at approximately -10.2 V .

AMPL: This voltage controls the amplitude of all functions. The normal amplitude range is 4.0 V to +10 V .

| Programmed Sine Amplitude | TP AMPL |
| :---: | :---: |
| $2.99 \mathrm{Vp}-\mathrm{p}$ | +7 V |
| $3.00 \mathrm{Vp}-\mathrm{p}$ | -4 V |
| $10.00 \mathrm{Vp}-\mathrm{p}$ | +10 V |
| Sine function off | -10 V |

OS2: This voltage controls the D.C. offset of the output waveform.
With Sine function off:

| Programmed D.C. Offset | TP OS2 |
| :---: | :---: |
| +5 Vdc | +10 V |
| -5 Vdc | -10 V |

OS1: This is the DC offset error correction voltage and is calculated during a self-calibration. This voltage should always be close to 0 V .

XDR: X Drive is zero when not sweeping. It's -10 V for a one second sweep and -0.1 V for a 99 second sweep.

A common problem with this section of the A14 board is loading of the DAC test point by a bad analog switch, Op-Amp, or a Sample/Hold capacitor. To check for a loading problem, unsolder the lead nearcst the DAC test point on the resistor (R55) between A14U16 pin 6 and the test point. Attach an oscilloscope probe to the unsoldered lead of the resistor and monitor the DAC pulse train. Continue to observe this pulse train while pressing the resistor lead down so that it makes contact with the point from which it was unsoldered. If any change in the levels of the pulse train is observed, the waveform is being loaded by a defective analog switch or Op-Amp.

The Preset Counters and Data Latch are not easily checked, but fortunately they seldom fail. If the correct DAC pulse train is observed with Auto-Cal disabled, the counters are working correctly. Data pulses with TTL levels should be observable at all times at the inputs and outputs of A14U6-A14U9 and A14U29. If any of these are not TTL levels or are not changing, then the IC is suspect.

With the oscilloscope externally triggered at the $A Z$ test point, the switch drive signals (from the Sample/Hold Latch, U26) can be observed at the latch outputs and the Analog Switch inputs (U20 and U24). Pulse timing can be compared to the DAC Integrator outputs. Pulses should be present at the inputs to U26 continually.

The charge time and consequently the output voltage of the DAC Integrator is determined by the width of the output pulses from U10. These pulses turn on the dual current source, and the total current charges the integrator capacitor. The U10 outputs are negative-going pulses.

Pulses should be present at the input and output pins of the various IC's. The Load LSD, Load MSD, and S/H Strobe pulses should occur at a 1 kHz rate. The 2 MHz Reference (at the 2 MHz test point) is divided by 2 in U 14 to provide a clock signal to the DAC circuits.


Figure 8-I-1. Sine Amplitude Control Path.


8-I-4

Fig 8-42
$s h t 1084$


A14
03325.66514

Rev C



Fig $8 \cdot 12$
Sh 3 of 4


SEE PARAGRAPH 8-II3 WHEN REPLACING AI 4 (4)


Figure 8-42. D/A Converter and Sample/Hold, A14.

## SERVICE GROUP J. FUNCTION CIRCUITS.

## Function Circuits Troubleshooting.

The AI4Q112 amplifier circuit supplies sine wave current to the output amplifier. Disconnect the cable (marked " 23 ALC'") from A14J23 to permit maximum signal amplitude at A14 test point SIN.

## ECAUTION

Do not allow disconnected cable connector to contact the printed circuit boards or components, or circuits may be damaged.

The sine wave signal at test point SIN should be approximately 200 mV p-p at the selected frequency.

If this signal is not correct, the trouble is ahead of the SIN test point. If the sine function is the only one not operating correctly, check the diode CR101 and the filter components in the Q112 emitter circuit.

If there is a signal at the SIN test point, check the Sine Enable voltage at U28 pin 10. This should be at a TTL high level. If not, check input and clock signals to U28 and U27. The inputs to U28 can be traced to U29, Service Group I.

Be sure to reconnect cable 23 to A14J23.

## Square, Triangle, and Ramp Functions.

If the sine function is operating properly, but none of the other functions is correct, the trouble is probably in the Q101, Q102 circuits or U31 inverters. Also check for the correct enable signals from U28. The table next to U28 on the schematic relates the functions to the enable signal levels. The trouble may also be in the Offset and Amplitude Control circuits.

## Square Function Only.

If the square wave function only is not operating properly, observe the signal at the $S Q R$ test point on A14. This should be a TTL level square wave at the selected frequency.

If this signal is not present, check the Square Enable voltage level at U33 pin 4, which should be TTL high. If correct, check the clock input at U33 pin 3, then the U31 inverter circuits and Q101, 102. If the signal at U31 pins 5 and 9 is correct but pins 6 and 8 are always low, it is possible that U32 could be defective.

If the signal at SQR is correct, troubleshoot the U40 circuits and the Amplitude Control circuits.

If Self Tests 1 and 3 pass and Self Test 2 fails, suspect problems with A14U42 in Service Group K.

## Triangle and Ramp Functions.

If the sine and square functions are correct, but the triangle and ramp functions are not operating properly, use the following procedure.
a. Connect oscilloscope to the TRI test point (on Al4). Set controls as follows:

b. Set the 3325 A as follows:

| Function | Triangle |
| :---: | :---: |
| Frequency | 1 H |
| Amplitude | 10 V p-p |

c. The pulse width of the TRI signal should increase and decrease at a 1 Hz rate (TTL levels).
d. Monitor pin 9 of U36 with the oscilloscope. This should be a TTL square wave, frequency 1 MHz (actually 1.000001 MHz ). If not, go to Step f.
e. The signal at pin 10 of U 36 should be a TTL square wave at 1 MHz . If not, go to the 2 MHz test point and trace the signal through to U36 pin 10 . U14 divides the 2 MHz reference by two. If U14 is not operating, check for a TTL high Triangle Enable at U14 pin 10.
f. If the proper signal is not present at U36 pin 9, trace the signal back through U32, which is a $\div 10$ counter. Also check for a TTL high Triangle Enable level at U33 pin 10.
g. If the digital signals are all correct the trouble may be in U40 or the Triangle and Ramp Filter circuits. Observe the signal at the TRIFILT test point. It should be a triangle or ramp (selected function) approximately 200 mV p-p. If not, check U40 output at pin 13. Measure voltages in the Q114-Q118 circuits.

## Ramp Functions Only.

If only the ramp functions are not operating properly, the trouble is probably in the ramp reset circuits.
a. Connect an oscilloscope to the TRI test point (on A14). Set the controls as follows:

| Vertical | $0.2 \mathrm{~V} /$ div ( $\div 10$ probe $)$ |
| :---: | :---: |
| Sweep. | $\ldots$...... $0.1 \mu \mathrm{~s} / \mathrm{div}$ |
| Trigger. | .Int/+ slope |

b. Set the 3325A as follows:

> Function. .................................................... . . . Ramp
> Frequency........................................................ 1 Hz
> Amplitude.................................................... . 10 V p-p
c. The width of the positive pulse should decrease to zero, then reset and repeat at a 1 Hz rate (TTL levels).
d. Change function to - Ramp. The positive pulse at the TRI test point should increase to maximum, then reset to zero and repeat at a 1 Hz rate. If the signal is the same as the correct signal in Step d, the Ramp Polarity signal from U28 pin 5 may be incorrect. This level should be high for - Ramp function and low for + Ramp.
e. If the pulse width in Step cor dincreases and decreases, the pulse reset circuits are not operating, and the 3325A output signal should be a triangle, at a 0.5 Hz rate.
f. At frequencies below 100 Hz , the ramps are reset by the digital Phase Detector, U35. Check for negative-going pulses at U35 pin 6 , positive-going pulses at U37 pin 8, and negative-going pulses at U37 pin 6. Each pulse should toggle the output of U34, pin 8. The Ramp Enable level at U34 pin 10 must be high.
g. At frequencies of 100 Hz and higher, ramps are reset by the $\pm$ Ramp Reset pulses generated by the Ramp Reset one-shots (U45, Service Group K) which are triggered by the Level Comparator output, U42 pin 7. These are also negative-going pulses, approximately $10 \mu \mathrm{~s}$ wide.

## DC Offset and Amplitude Troubleshooting.

Problems in the Amplitude and Offset control circuits are most easily located by measuring de voltages. The voltages shown on the schematic are measured with the instrument in the turn-on state (power switched from STBY to ON). Amplitude problems have in the past, been linked to U38, U39, and U40 failures. If the amplitude level from the DAC (see AMPL test point - Service Group I) is correct as well as the voltages at A3TP4 (Service Group G), then the amplitude control circuitry in this service group is suspect.

A dc offset in sine function only may be caused by a fault in the Q103, Q104 circuits.
If the square, triangle, and ramp functions are inoperative, or if the DC Offset (no ac function) is one-half the programmed level, the problem may be in Offset Control circuits U38B, Q106, U41B, or Q113.

The voltages at Q108 emitters should always be identical.

Clipping of the positive or negative peaks on the output waveform is sometimes caused by a fault in the D.C. Offset Current circuitry. Too much or too little offset current causes the output amplifier to saturate on either the positive or negative peaks.


Figure 8-J-1. Sine Amplitude Control Path.

| Designator | Board Location | Designator | Board Location | Designator | Board Location | Designator | Board Location | Designator | Board Location |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C1 | A | C205 | F | J30 | H | R31 | B | R136 | E |
| C2 | B |  |  | J31 | D | R32 | B | R137 | E |
| C3 | C | C208 | F | J32 | F | R33 | 8 | A138 | E |
| C4 | C | C209 | F |  |  | R34 | B | R139 | E |
| C5 | c |  |  | L26 | 8 |  |  |  |  |
| C6 | c | C211 | F | L27 | 8 | R36 | B | R141 | E |
|  |  | C212 | F |  |  | R37 | B |  |  |
| C26 | A | C213 | F | L76 | E | R38 | B | $R 143$ | E |
| C27 | A | C214 | F | 177 | E | R39 | B | R144 | F |
| C28 | A |  |  | 178 | E | R40 | B | R145 | F |
| C29 | A | C216 | G | 179 | F |  |  |  |  |
|  |  | C217 | G |  |  | R41 | B | 8146 | F |
| C31 | 8 | C218 | G | L101 | D | 842 | B | R147 | F |
| C32 | 8 | C219 | G | L102 | D | 843 | B | R148 | F |
| C33 | 8 |  |  | L103 | D | R44 | B | R149 | F |
| C34 | B | C221 | G | L104 | F | R45 | c |  |  |
| C35 | c | C222 | G | L105 | F |  |  | R151 | F |
|  |  | C223 | G | L201 | F | R46 | B | R152 | F |
| C36 | B | C224 | G |  |  | R47 | B | R153 | F |
| C37 | B | C225 | G | P31 | D | R48 | B | R154 | F |
| C38 | B |  |  | P32 | F | R49 | c | R156 | F |
| C39 | B | C226 | G |  |  | R50 | B | R157R158 |  |
|  |  | C227 | G | 01 | B |  |  |  | F |
| C41 | B | C228 | G | Q2 | B | R51 | C | $R 159$ | F |
| C42 | B | C229 | G | 03 | B | R52 | C | R160 | F |
| C43 | B | C230 | H |  |  | R53 | C |  |  |
| C44 | B | C231 | H | 025 | B | R54 | c |  | F |
| C45 | B |  |  | 026 | B |  |  | R162 | F |
|  |  | C233 | G | 027 | C | R56 | C | R163 | F |
| C46 | 8 | C234 | G | 028 | 8 |  |  | R164 | F |
| C47 | c | C235 | H |  |  | $R 57$ | c |  |  |
| C48 | c | C236 | H | 076 | H | R58 | c | F166 | F |
| C49 | c | C237 | H | 077 | H | R60 | c |  |  |
|  |  | C238 | H | 878 | G |  |  | R168 |  |
| C61 | C | C239 | H |  |  |  |  | R169 | F |
| C62 | C |  |  | Q101 | D | R61 | c |  |  |
| C63 | C | C241 | H | 0102 | D | R62 | C | R208 | F |
|  |  | C242 | H | 0103 | E | R63 | c | $R 209$ | F |
| C65 | C | C245 | H | 0104 | E | R64 | C |  |  |
| C66 | c | C246 | G | 0105 | 0 | R65 | c | R211R212 | F |
|  |  | CR1 | A |  |  |  |  |  |  |
| C76 | C | CR2 | C | 0106 | E | R67 | c |  |  |
| C77 | D | CR3 | c | 0107 | E | R68 | c | R214 | F |
| C78 | G | CR4 | B | 0108 | E | R69 | c | R215 | G |
| C101 | D | CR5 | B | 0109 | E | R76 C |  | R216 | F |
|  |  | CR6 | A |  |  | R77 | D | R217 | F |
| C103 | D | CR7 | A | 0112 | F | R78 | H | R218 | G |
| C104 | D |  |  | $\begin{aligned} & \text { Q113 } \\ & \text { Q114 } \end{aligned}$ | F | $\begin{aligned} & \text { R79 } \\ & \text { R80 } \end{aligned}$ | H | R219 | G |
|  |  | CR76 | H |  |  |  | HH |  |  |
| C107 | 0 |  |  |  |  | R81 |  |  | G |
| C108 | 0 | CR101 | D | Q116 | F |  |  | R222 | G |
| C109 | D | CR102 | D | 0117 | F | R100 | D | R223 | G |
| C110 | D | CR103 CR104 | E | $\begin{aligned} & \text { Q118 } \\ & \text { Q119 } \end{aligned}$ | F | R101R102 | D | R224 | $\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |
| C111 | D |  |  | Q201 |  | R102 <br> R103 | D | $\begin{aligned} & \text { R226 } \\ & \text { R227 } \end{aligned}$ | G G |
| C112 | D | CR106 | F |  | F | R104 | D | R228R229 | $\stackrel{G}{G}$ |
|  | D | CR107 | F | $\begin{aligned} & \mathrm{Q} 202 \\ & \mathrm{Q} 203 \end{aligned}$ | $\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \end{aligned}$ | R105 | D |  |  |
| C114 | D |  |  |  |  |  |  | R229 | G |
|  |  | CR205 | G | 0204 | $\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \end{aligned}$ | R106 <br> R107 | 0 | R231R232 | $\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \\ & \mathrm{G} \\ & \mathrm{G} \end{aligned}$ |
| C116 | D | CR208 | G |  |  |  | D |  |  |
| C117 | D | CR209 | G | 0206 | G | R108 | D | R233 |  |
| C118 | E |  |  | 0207 | G | R109 | D | R234 |  |
| C119 | E | CR210 | G | $\begin{aligned} & \mathrm{Q} 208 \\ & \mathrm{Q} 209 \end{aligned}$ | $\stackrel{\text { G }}{\text { G }}$ | R110 | D | R236 |  |
|  |  |  |  |  |  |  |  |  | G |
| C121 | E | CR211 | G |  |  | R111 | D | R237 | G |
| C122 | E | CR212 | G | 0211 | H | R112 | E | $R 238$ | G |
| C123 | E | CR213 | G | 0212 | H | R113 | E | R239 | G |
| C124 | E | CR214 CR215 | G | 0213 | H | R114 | E | R241 | G |
|  |  |  | H | 0214 | H |  |  | R242 |  |
| C126 | E |  |  |  |  | R116 | E |  | G |
| C127 | E | CR216 | G | 0216 | H | $R 117$ | E | R244 | G |
| C128 | E | CR217 | H | 0217 | G | R118 | E |  |  |
| C129 | E | CR218 | H | 0218 | H | $R 119$ | E | R246 | G |
|  |  | CR219 | H | 0219 | H | R120 | E | R247 | H |
| C131 | E | CR220 | H |  |  |  |  | R248 | H |
| C132 | E | CR221 | H | R1 | A | R121 | E | R249 | G |
| C133 | E |  |  |  |  | R122 | E | R250 | H |
|  |  | F1 | B | R3 | A | $R 123$ | E |  |  |
| C134 | E | F2 | A | R4 | C | R124 | E | R251 | G |
| C135 | F | F3 | G | R5 | B |  |  | R252 | H |
|  |  | F4 | G |  |  | R126 | E | R253 | G |
| C136 | F |  |  | 86 | B | R127 | E | R254 | H |
| C137 | F | J1 | F | $R 7$ | B | R128 | E | R255 | G |
| C138 | F | J2 | G | R8 | B | R129 | E |  |  |
| C139 | F | J4 | H | 89 | c |  |  | R256 | H |
|  |  | J5 | G |  |  | R13 $\uparrow$ | E | R257 | H |
| C141 | F |  |  | R11 | c | R132 | E | R258 | H |
| C142 | F | J9 | B |  |  | R133 | E | R259 | H |
| C143 | F | 112 | A | R26 | A | R134 | E | R260 | G |
| C144 | F | $J 13$ | 8 | R27 | A |  |  |  |  |
|  |  | J14 | c | R28 | A |  |  |  |  |
| C203 | F |  |  | R29 | A |  |  |  |  |
|  |  | J 23 J 24 | F |  |  |  |  |  |  |



Fig $8-43$
sat 185


Fig $8-43$
she 2 of 5

Note 1: These voltage levels are useful when troubleshooting amplitude problems. Levels shown occur with the 3325A's frequency set to 1 kHz , and with Auto Calibration Disable (ACD) grounded.



Fig, 8-43
ste 4 of 5

* SEE NOTE 1

SINE WAVE CURRENT
$\Delta 5$


$$
\begin{aligned}
& \text { Cig } 8-43 \\
& \text { sht } 5085
\end{aligned}
$$



Figure 8-43. Function Circuits, A14.

## SERVICE GROUP K - OUTPUT AMPLIFIER AND LEVEL COMPARATOR.

## Output Amplifier and Level Comparator Troubleshooting.

If the instrument accepts and displays entries, but there is neither a signal nor sync output, the trouble may be in the Output Amplifier circuit. Note that when troubleshooting amplitude problems, the Auto Calibration Disable (ACD) test point must be grounded and the power cycled (Figure 8-44). This procedure breaks the amplitude loop and makes it possible to troubleshoot the amplitude control path (see Figure 8-K-1).
a. Move the small shorting connector marked AMP IN (on A14) from the NORM to the opposite position.
b. Disconnect any external equipment from the signal output.
c. Measure the dc voltage at the AMP OUT test point and at both ends of the fuse, F3. These voltages should be approximately +7.5 V .

If these voltages are all correct, the amplifier is probably operating correctly, and the problem may be in the Attenuator, Service Group L.

The fuse F3 can be opened when excessive voltage is applied to the 3325A's signal port. It, therefore, blows fairly often and should be replaced as necessary ( 0.25 A , -hp- Part No. 2110-0343).

If the amplifier output voltage is not correct, troubleshoot the amplifier circuit by measuring de voltages within the circuit as shown on the schematic (tolerance $\pm 10 \%$ ). These voltages are measured with the AMP IN shorting connector in the TEST position. While troubleshooting, note that the circuit from the node common to the bases of A14Q207 and A14Q213 to the AMP OUT test point is a voltage follower. Thereforc, the waveform at the node and at the test point should be the same. When troubleshooting the circuit from A 14 Q 210 to A 14 Q 209 , it is helpful to check the forward and backward resistance of each transistor.

Be sure to replace the shorting connector to the NORM position after troubleshooting.

If the 3325A does not meet accuracy specifications at 20 MHz after repair of the output amplifier, and the flatness cannot be adjusted properly with the FLT adjustment (Section V, Amplitude Flatness Adjustment), it may be necessary to select a different value for A14C103 (Service Group J). Increasing the value increases the output amplitude at higher frequencies, and vice versa. Note that the 20 MHz flatness adjustment (FLT) affects square wave overshoot.

## No Sync Output, Signal Output Normal.

If the signal output is normal but there is no sync output, check for a square wave at both ends of the fuse, F4. With no external equipment connected to the sync output, this should be a TTL level square wave.

If the signal is present at only one end of the fuse, replace the fuse (. 125 A , -hpPart No. 2110-0301).

If the fuse is good, trace the signal from U47 through U48. If any one of the five parallel inverters has failed with either the input or output at ground, the sync output will not be present.

If there is no signal at U 47 output, move the small shorting connector marked AMP IN from the NORM position to the opposite position. The dc voltage at U47 pin 2 should then measure +3.75 V (one-half the voltage at the AMP OUT test point).

Be sure to return the shorting connector to the NORM position after troubleshooting.

## Level Comparator, Level Data, and Ramp Reset Troubleshooting.

The Level Comparator output level (at PK test point) changes each time the amplifier output equals the "Level'" voltage at U42 pin 3. These changes should be easily observed when the AMPTD CAL key is pressed.

The Level Comparator outputs preset the Level Data Flip-Flops, which are reset as necessary by the controller.

The Ramp Reset one-shots are triggered by the Level Comparator outputs when the Ramp Enable signal is high. The level of the Ramp Polarity signal at U45 pins 2 and 9 determines whether the + Ramp or - Ramp reset one-shot is triggered.


Figure 8-K-1. Sine Amplitude Control Path.


8-K-3

| R261 | H | +15V | B | U1 | A | U26 | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R262 | H | -15V | B | U2 | A | U27 | C |
| R263 | H | $+15 \mathrm{~V}$ | G | U3 | B | U28 | C |
| R264 | H | -15V | G | 44 | B | U29 | D |
| R265 | H |  |  | U5 | C | U30 | G |
|  |  | ACD | G | U6 | C |  |  |
| $R 266$ | H | AMPL | $c$ | U7 | A | U31 | D |
| R267 | H | AMP OUT | G | U8 | A | U32 | D |
| R268 | H | AZ | C | U9 | A | U33 | D |
| R269 | H |  |  | U10 | B | U34 | D |
| R270 | H | DAC | c |  |  | U35 | D |
| R271 | H | GNO | G | U11 | B |  |  |
| R272 | H | LVL | D | U12 | 8 | U36 | $E$ |
| R273 | H | OS1 | D | U13 | B | U37 | E |
| R274 | H | OS2 | C | U14 | B | U38 | E |
| R275 | H |  |  | 015 | B | U39 | E |
|  |  | PK | F | U16 | B | U40 | F |
| R276 | H | RMP | D | U17 | B | U41 | F |
| R277 | H | SINE | E | U18 | C | U42 | F |
|  |  | SQR | E | $\cup 19$ | C |  |  |
| Test Points |  |  |  | U20 | C | U44 | F |
| 2 MHz | A | TRI | E |  |  | U45 | F |
| $+5 \mathrm{~V}$ | A | TRIFILT | F | U21 | C | U46 | G |
|  |  | XDR | D |  |  | U47 | G |
|  |  |  |  | U23 | C | $\cup 48$ | G |
|  |  |  |  | U24 | C | U49 | G |
|  |  |  |  | U25 | C | U50 | G |


| Freq | Programmed Amplitude | TP Amp Out OVdc Offset | TP Amp Out 2Vdc Offset |
| :---: | :---: | :---: | :---: |
| 1 kHz | 1 | $7.2 \mathrm{Vp}-\mathrm{p}$ | 2.4 Vp -p |
|  | 2 | $14.4 \mathrm{Vp-p}$ | 4.8 Vp -p |
|  | 3 | 7.2 Vp -p | 7.2 Vp -p |
|  | 4 | 9.6 Vp -p | $9.6 \mathrm{Vp}-\mathrm{p}$ |
|  | 5 | 12.0 Vp -p | $12.0 \mathrm{Vp}-\mathrm{p}$ |
|  | 6 | 14.4 Vp -p | $14.4 \mathrm{Vp}-\mathrm{p}$ |
|  | 7 | $17.0 \mathrm{Vp}-\mathrm{p}$ | - |
|  | 8 | $19.0 \mathrm{Vp-p}$ | - |
|  | 9 | $22.0 \mathrm{Vp}-\mathrm{p}$ | - |
|  | 10 | $24.0 \mathrm{Vp}-\mathrm{p}$ | - |

Figs 44
sht iof 4


Fig 8-44
she 2 of 4


Fig $8-44$
Sht $30 \% 4$



Figure 8-44. Output Amplifier, A14.
8-K-5/8-K-6

## SERVICE GROUP L - ATTENUATOR.

## Troubleshooting Attenuator Relays and Drivers.

Set output to:

$$
\begin{aligned}
& \text { Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }
\end{aligned}
$$

## Press AMPTD CAL Key.

Measure the 3325A output voltage with a de digital voltmeter. Do not use a 50 -ohm load. The output level should be $+10.000 \mathrm{~V} \pm 0.4 \%$. If the output voltage is incorrect by a large amount (a factor of 3,10 , or 100 for example) one of the attenuator relays may be latched in the wrong position. With the DC Offset set to 5 V , none of the attenuator pads should be in.

| If $\div 100 \mathrm{pad}(\mathrm{K} 1)$ is IN | 0.100 V |
| :--- | :---: |
| If $\div 10 \mathrm{pad}(\mathrm{K} 2)$ is IN | 1.000 V |
| If $\div 3$ pad $(\mathrm{K} 3)$ is IN | 3.333 V |
| If $\div 100$ and $\div 10$ pads are IN | 0.010 V |
| If $\div 100$ and $\div 3$ pads are IN | 0.033 V |
| If $\div 10$ and $\div 3$ pads are IN | 0.333 V |
| If K4 is in the IN position |  |
| Instrument with High Voltage |  |
| $\quad$ Option 002 | 20.00 V |
| Instrument without Option 002 |  |
| $\quad$ (front panel output) | 0 V |
| (rear panel output) | 10.00 V |

Operation of the latching relays may be checked by momentarily grounding each output of A4U50, and A4Q76 collector, as follows:

| Pin No. | Relay |  |
| :---: | :---: | :--- |
| 10 | K4 | Front output or H.V. OFF |
| 16 | K4 | Rear output or H.V.ON |
| 15 | K3 | OUT |
| 14 | K3 | IN |
| 13 |  |  |
| 12 | K2 | OUT |
|  | K2 | IN |
| 11 |  |  |
| Q76 Coll. | K1 | OUT |

A small error in the output voltage may be caused by the output amplifier or by excessive contact resistance in the attenuator relays, particularly if the error is not evident on all ranges. The following table lists the eight ranges used in the DC Offset only mode, and the relays used for each range. Relay K 4 is used for all ranges.

| Range | DC Offset Only <br> (No AC Function) | Attenuator <br> Relay Pads In |
| :---: | :---: | :---: |
| 1 | 5.000 to 1.500 V | None |
| 2 | 1.499 to 0.500 V | K3 |
| 3 | 499.9 to 150.0 mV | K 2 |
| 4 | 149.9 to 50.00 mV | $\mathrm{K} 2, \mathrm{~K} 3$ |
| 5 | 49.99 to 15.00 mV | K 1 |
| 6 | 14.99 to 5.000 mV | $\mathrm{K} 1, \mathrm{~K} 3$ |
| 7 | 4.999 to 1.500 mV | $\mathrm{K} 1, \mathrm{~K} 2$ |
| 8 | 1.499 to 1.000 mV | $\mathrm{K} 1, \mathrm{~K} 2, \mathrm{~K} 3$ |

Relay drive pulses at A14U49 outputs and A14U50 and A14Q76 occur only in conjunction with a range change. Changing the output level from 5 V to 1 mV results in pulses to $\mathrm{K} 1, \mathrm{~K} 2$, and K 3 which place them in the "pad in" position. Changing from 1 mV to 5 V causes all three relays to change to the "pad out" position. Pulses may be observed at the proper points by observing an oscilloscope set to a slow sweep speed while entering the above voltages. The clock pulse to $\cup 49$ may also be observed during any range change. Pulses should appear at U49 inputs continually.

## A23 Attenuator Relay Cleaning and Servicing.

## Removal and Replacement

Use a small screwdriver or similar tool to pry the flat spring retainer away from the side of the relay and remove the retainer. The relay can then be lifted from the board (each relay should be marked on the case to insure that they will be returned to the same position). When replacing the relay, make sure the key tabs on the bottom of the relay case are properly aligned with the holes in the printed circuit board and that the contact pins also fit properly.

## Relay and Board Cleaning

Before cleaning the relays and the printed circuit board, note the following precautions:

- do not clean the relays with solvents or fluorcarbons (e.g. Freon, "Dust-OFF" flux remover, or circuit cooler).
- avoid touching the contacts
- use only low pressure ( 10 psin max) dry gas. $\mathrm{CO}_{2}, \mathrm{~N}_{2}$, or air are all acceptable. A squeeze bulb blower is good. Do not use your mouth.

$$
\text { Fig } 8-45
$$

Procedure: she if ${ }^{3}$
a. After the relays have been removed from the board as instructed above, blow clean the relay contacts and armature with low pressure dry gas (e.g., $\mathrm{CO}_{2}, \mathrm{~N}_{2}$, or air). Do not blow with your mouth.
b. Spray no-noise silicon lubricant ( $\mathrm{P} / \mathrm{N}$ 6030-0063) into the cavity area. Place the relay, contact side down, in a dust-free area and allow it to cure for 24 hours before using.
c. Clean the printed circuit board where the relays sit with isopropyl alcohol (" 2 -Propanol" $\mathrm{P} / \mathrm{N}$ $8500-0755$ ). Apply the alcohol with a soft brush (P/N 8520-0007). Avoid circular brush strokes and maintain a minimum amount of application pressure. Avoid using anything else (such as erasers) on the board. Blow dry the board and store in a dust-free area until the relays are ready to be reattached.
d. When the relays have cure dried, reattach them to the board. Check to insure that the relays are functioning properly by following the procedures described in the troubleshooting section.


A23 03325.66523

Rev B


A14
03325-66514
Rev C

Fig 8-45
aht 2 of 3


$$
\begin{aligned}
& \text { Fig } 8-45 \\
& \text { sht } 3 \operatorname{of}^{3}
\end{aligned}
$$



Figure 8-45. Relay Drivers, A14, and Attenuator, A23.

## SERVICE GROUP M - OPTIONS: HIGH VOLTAGE OUTPUT (OPT. OO2) AND HIGH STABILITY REFERENCE (OPT. 001).

## High Voltage Output Amplifier Troubleshooting.

Before scrvicing the A 8 assembly, be sure that it is being used within its limits of operation:

Frequency Range: $0-1 \mathrm{MHz}$
Output Load: $500 \Omega$ minimum
If the standard output is normal but there is no high voltage output, move the small shorting connector marked AMP IN (on A14) from the NORM position to the opposite position. Measure the dc voltage at A8TP5 and at both ends of A8F1. This voltage should be approximately +15 V .

If voltage is present at only one end of A8F1, replace the fuse (. 25 A , -hp- Part No. 2110-0343).

If the fuse is good, return the shorting connector to the NORM position. Disconnect the cable (marked $20 \mathrm{HIV1)}$ from A8J20. Measure dc voltages with the circuit as shown on the schematic. Voltages should be within $\pm 10 \%$.

Check that jumper A6WI is clipped or missing. The absence of this jumper indicates to the processor that the High Voltage option is installed and the processor will then allow voltages greater than 10 Vp -p to be programmmed.

Note that the A 8 assembly has its own +30 V power supply.

Be sure to reconnect the cable to U8J20 after troubleshooting.

## REAR PANEL OUTPUT WITH OPTION 002.

Normally, instruments having the High Voltage Output Option 002 are shipped from the factory with the signal output at the front panel. The signal output can be changed to the rear panel by reconnecting Cables 1 and 4 .
a. Disconnect Cable 1 (to the front panel signal output) from the attenuator assembly J1 OUT.
b. Disconnect Cable 4 (to rear panel signal output) from the connector on A14 labeled " 4 DUMMY", and connect it to Jl OUT on the attenuator assembly. It may be necessary to cut a cable tie to reach J .
c. Connect Cable 1 to the " 4 DUMMY" connector.
d. The standard and high voltage outputs will now appear at the rear panel SIGNAL connector.


## CHANGING OPTION 002 TO STANDARD (FRONT/REAR) OUTPUT.

Use the following procedure to change an instrument with High Voltage Output Option 002 to the standard instrument Front/Rear signal output configuration. The High Voltage output will then not be available at either the front or rear panel.
a. Disconnect Cable 20 from the attenuator assembly connector labeled "AUX OUT $4 / 20^{\prime \prime}$.
b. Disconnect Cable 21 from the attenuator assembly connector labeled "HV IN".
c. Disconnect Cable 4 from the connector on A6 labeled "4 DUMMY" and connect it to the attenuator assembly connector labeled "AUX OUT 4/20".
d. Connect Cable 20 to the " 4 DUMMY"' connector.
e. Secure Cable 21 in a position that does not allow the connector to touch the printed circuit board or any component.
f. Solder a small wire jumper in the position on A6 that is between A6U43 and A6S1. This jumper is marked W1 on the schematic diagram and the component location drawing in Service Group C. When this jumper is in place, the logic circuits recognize the standard (no high voltage output) configuration.
g. Attach a tag or other identification to the front panel to indicate that the high voltage output has been disabled and that the standard signal output is available at the front or rear panel (switchable).

Fis 8.46 Sht of 3



A8
$03325-66508$

$$
\begin{aligned}
& \text { Fig } 8-46 \\
& \text { sit } 2 \text { of } 3
\end{aligned}
$$

AB
AB HIGH VOLTAGE OUTPUT CAPTION OKA) 03325-6650E

1



Figure 8-46. High Voltage Output Option 002, A8.

Fig 8.47 sht if 4


3325A-39


$$
\begin{aligned}
& \text { Fis } 3-47 \\
& \text { sht } 3 f^{4}
\end{aligned}
$$



Fig 8.47
Sht 4064

## SERVICE GROUP N - SWEEP DRIVE CIRCUITS.

## Troubleshooting The Sweep Drive Circuits.

To determine whether only one or both $X$ Drive ranges are bad, monitor the $X$ Drive output with an oscilloscope.
a. Set sweep time to .999 sec . Press START CONT key. X Drive output should go from 0 V to $>+10 \mathrm{~V}$ during sweep up, and remain at 0 V during sweep down.
b. Set sweep time to 1 sec . The oscilloscope display should be as described in Step a.
c. Check the voltage at the XDR test point (on A14). This voltage should change from -10.0 V to -0.1 V when the sweep time is changed from 1 sec to .999 sec .
d. If neither output is correct in Steps a and b, first troubleshoot the X Drive Integrator circuit. The ramp reset pulse at the gate of A 14 Q 1 should be as indicated on the schematic, with the negative-going edge of the pulse occurring at the end of a sweep up (in continuous sweep). Also check for the Ramp Reset pulse at A14U1 pin 12. If no pulse is present, go to the Logic troubleshooting, Service Group C.
e. Setting the sweep time to .999 sec checks Range 1 , while a time of 1 sec checks Range 2. If only one range is inoperative, compare the voltage at U 4 pin 4 (Range 1) or U3 pin 6 (Range 2) to the voltage at the XDR test point.

$$
\begin{aligned}
& .999 \mathrm{sec}=-0.1 \mathrm{~V} \\
& 1 \mathrm{sec}=-10.0 \mathrm{~V}
\end{aligned}
$$

If these voltages are correct, the Sweep Range Switches are working, and the trouble is probably in the X Drive Integrator.
f. If either of the voltages in Step e is not correct, check for the Range 1 level at U4 pin 2, or the Range 2 level at U3 pin 2 and 3 . One of these should be TTL high and the other low, depending upon the range of the sweep time selected.
g. The Start output from the X Drive Start/Stop Flip-Flop should be high during a sweep up and low during sweep down. The L Start level at U2 pin 2 and U1 pin 15 should go low at the beginning of a sweep up and high just before the end of sweep up.

## Z Blank Output.

With the 3325 A in continuous sweep (linear mode) the $Z$ Blank output should be at a TTL low level during sweep up, high during sweep down. Check for this signal at both ends of A14F1. If the fuse is bad, replace with -hp-P/N $2110-0343,0.25 \mathrm{~A}$. The signal should be inverted at the base of Q3.

## Marker Dutput.

The Marker output operates only during a linear sweep up. It is high at the start of a sweep up, goes low at the selected marker frequency, then high again at the stop frequency. Check for this signal at both ends of A14F2. If the fuse is bad, replace with -hp- Part No. 2110-0343, . 25 A .

If the fuse is good, check for the presence of the Sweep Limit Flag at U2 pin 5, and the Marker Reset pulse at U2 pin 1. Both should be negative-going pulses. Sweep Limit Flag should occur at the selected marker frequency and at the end of sweep up. The Marker Reset pulse should occur immediately after the end of sweep up.

Fig $8-48$ sint $180^{3}$




| U3 |  |  |
| :---: | :---: | :---: |
| INPGTS |  |  |
| RNS $Z$ | START | SWITOG |
| $L$ | $K$ | OPEN |
| $X$ | $L$ | OPIN |
| $H$ | $H$ | CLOSED |

Figure 8-48. Sweep Drive Circuits, A4. 8-N-3/8-N-4

## SERVICE GROUP 0 - POWER SUPPLIES.

## Power Supply Troubleshooting.

## \&CAUTION

The Power Supply printed circuit board mounting screws must be tightened securely or the regulators will not operate properly. The line fuse may be destroyed.

To determine if the trouble is in the regulators or if some other circuit is pulling down a power supply voltage, disconnect the cable (W22) from A2P5. This breaks the connector to the power switch; ground A2P5 pin 10 to enable the power supplies.

The three power supply voltages ( $\pm 15 \mathrm{~V},+5 \mathrm{~V}$ ) are routed from A2P5 through the cable W22 to A6P5, and from A6 are connected to the other assemblies through the flat cables at the side of A6 and the gray or blue cable to the keyboard assembly. In addition to the flat cables, $\pm 15 \mathrm{~V}$ are routed to A14 through either a 2 -wire cable which has a connector at each end, or through individual wires connecting to square pins at either end. When replacing either the 2 -wire cable or the individual wires, make sure the connection is correct. The red wire goes to +15 V and the black wire to -15 V .

If the power supply voltages are not within $\pm 1 \mathrm{~V}$ of the correct value with the cable removed, troubleshoot the regulator circuits, using the dc voltages noted on the schematic. Note that all supplies arc referenced to -15 V . Therefore, if this supply is bad, the +5 V and +15 V supplies will be off as well.

If the power supply voltages are correct with the cable disconnected, disconnect all three of the flat cables and the cable to the keyboard assembly, and reconnect cable W22 to A2P5. Connect the STBX test point (on A6) to ground to enable the power supplies. If power supply voltages are again incorrect, the problem is on the A6 assembly (Service Groups B and C). If power supply voltages are correct with A6 connected and the other assemblies disconnected, replace the cables one at a time to locate the problem, then troubleshoot the appropriate assembly.

The flat cables must be removed and reinserted carefully to prevent damage. Make sure that the cable contacts are aligned proper$t y$ with the connector contacts.

## NOTES

1. When replacing $Q 1, Q 2$, or $Q 3$, make sure the insulator is in place correctly. Use a heat transfer compound between the transistor, insulator, and heat sink. Be sure to use the proper length screw for replacement.
2. If the heat sink is removed from the side frame, be sure to use the proper length screws to replace it. If the screws are too long, or if the washer is omitted, the screws may short the transistors to the frame.

| Designator | Board Location | Designator | Board Location | Designator | Board Location |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C1 | B | L1 | E | R17 | E |
| C 2 | B |  |  | R18 | $\stackrel{F}{F}$ |
| C3 | B | P1 | C | R19 | F |
| C4 | B | P2 | D | R20 | F |
| C5 | B | P3 | H |  |  |
|  |  | P4 | H | R21 | F |
| C6 | C | P5 | B | R22 | G |
| C7 | c |  |  | R23 | G |
| C8 | c | Q1 | A | $R 24$ | G |
| C9 | D | Q2 | A | R25 | G |
| C10 | F | 03 | A |  |  |
|  |  | 04 | A | R26 | g |
| C11 | F | 05 | A | R27 | H |
| C12 | E |  |  | R28 | H |
|  |  | -6 | B | R29 | H |
| C14 | G | 07 | B | R30 | B |
| C15 | G |  |  |  |  |
| C16 | H | 09 | ¢ | R32 | A |
| C17 | H | 010 | F | R33 | F |
| 618 | H | 011 | A |  |  |
|  |  |  |  | 51 | O |
| CR1 | B | R1 | A | S2 | E |
| CR2 | B | R2 | A |  |  |
| CR3 | C | R3 | A | Test Points |  |
| CR4 | C | R4 | A | GND | G |
| CR5 | D | R5 | A | $\begin{aligned} & +15 \mathrm{~V} \\ & +5 \mathrm{~V} \end{aligned}$ | $\stackrel{G}{G}$ |
| CRE | E | R6 | A | -15V | F |
| CR7 | E | R7 | A |  |  |
| CR8 | F | R8 | A | $+15 \mathrm{U}$ | C |
| CR9 | H | R9 | A | +5U | A |
| CR10 | C | R10 | A | - 15 | B |
| CR12 | E | R11 | B | U1 | 8 |
| CR13 | E | R12 | B | U2 | F |
| CR14 | E | R13 | E | $\cup 3$ | F |
| CR15 | G | R14 | D | U4 | $G$ |
| CR16 | E | R15 | C |  |  |
| K1 | H | R16 | E | V1 | G |

> Fig $8-49$ She if 3


AR
03325.66502 Rev F

Fig $8-19$
sht 2 of 3



Figure 8-49. Power Supplies, A2.

> Fig $8-50$ sht iof


Fig 8.50
Shet 2 of 4


$$
\begin{aligned}
& \text { Fig } 8-50 \\
& \text { Sint } 384
\end{aligned}
$$



Fig 8-50
Shut $4 f^{4}$


Figure 8-50. Function Block Diagram.


[^0]:    Data
    *Trigger
    Clear
    Remote
    Local
    Local Lockout
    Clear Lockout and Set Local
    Require Service

[^1]:    *Program times are in addition to the data transfer time of 225 to $250 \mu \mathrm{~s}$ per byte.

[^2]:    *Start Single code must be sent twice "SSSS". The first "SS" resets the sweep to start conditions and

[^3]:    High Voltage Output (Option 002) . . . . . Off
    Function . . . . . . . . . . . . . . . . . . . . . . . . . Sine
    Frequency. . . . . . . . . . . . . . . . . . . . 20 MHz
    Amplitude. . . . . . . . . . . . . . . . . . . . . 10 V p-p

[^4]:    See introduction to this section for ordering information
    *Indicates factory selected value

[^5]:    See introduction to this section for ordering information

[^6]:    See introduction to this section for ordering information
    *Indicates factory selected value

[^7]:    See introduction to this section for ordering information
    *Indicates factory selected value

[^8]:    See introduction to this section for ordering information *Indicates factory selected value

[^9]:    See introduction to this section for ordering information
    *Indicates factory selected value

[^10]:    See introduction to this section for ordering information
    *Indicates factory selected value

[^11]:    See introduction to this section for ordering information
    ＊Indicates factory selected value

[^12]:    See introduction to this section for ordering information
    *Indicates factory selected value

[^13]:    See introduction to this section for ordering information

[^14]:    ** Assemblies ordered for replacement contain the new connectors, however, the newer (gray) cables are not included. They must be ordered separately along with the connectors for the destination assemblies.

    Note - Because of the increased reliability, all cables and connectors should be changed regardless of the assembly and deatination assemblies involved. Cable and connector replacement is recommended even if board replacement is not required.

    Note - if necessary (although not recommended), a newer replacement assembly may be fitted with the older connectors ( $\mathrm{P} / \mathrm{N}$ 1251-4494, 21 pin/ 1251-4390, 14 pin) for use with the older (white) cables ( $\mathrm{P} / \mathrm{N}$ 8120-2577, 5in/8120-2576, 2.3in).

[^15]:    *FF32 W/O Jumper, 0000 W/Jumper

